Vehicle-Anti-Theft-Face-Rec.../venv/Lib/site-packages/skimage/measure/_marching_cubes_lewiner.py

388 lines
17 KiB
Python

import warnings
import base64
import numpy as np
from . import _marching_cubes_lewiner_luts as mcluts
from . import _marching_cubes_lewiner_cy
from ._marching_cubes_classic import _marching_cubes_classic
def marching_cubes(volume, level=None, *, spacing=(1., 1., 1.),
gradient_direction='descent', step_size=1,
allow_degenerate=True, method='lewiner', mask=None):
"""Marching cubes algorithm to find surfaces in 3d volumetric data.
In contrast with Lorensen et al. approach [2], Lewiner et
al. algorithm is faster, resolves ambiguities, and guarantees
topologically correct results. Therefore, this algorithm generally
a better choice.
Parameters
----------
volume : (M, N, P) array
Input data volume to find isosurfaces. Will internally be
converted to float32 if necessary.
level : float
Contour value to search for isosurfaces in `volume`. If not
given or None, the average of the min and max of vol is used.
spacing : length-3 tuple of floats
Voxel spacing in spatial dimensions corresponding to numpy array
indexing dimensions (M, N, P) as in `volume`.
gradient_direction : string
Controls if the mesh was generated from an isosurface with gradient
descent toward objects of interest (the default), or the opposite,
considering the *left-hand* rule.
The two options are:
* descent : Object was greater than exterior
* ascent : Exterior was greater than object
step_size : int
Step size in voxels. Default 1. Larger steps yield faster but
coarser results. The result will always be topologically correct
though.
allow_degenerate : bool
Whether to allow degenerate (i.e. zero-area) triangles in the
end-result. Default True. If False, degenerate triangles are
removed, at the cost of making the algorithm slower.
method: str
One of 'lewiner', 'lorensen' or '_lorensen'. Specify witch of
Lewiner et al. or Lorensen et al. method will be used. The
'_lorensen' flag correspond to an old implementation that will
be deprecated in version 0.19.
mask : (M, N, P) array
Boolean array. The marching cube algorithm will be computed only on
True elements. This will save computational time when interfaces
are located within certain region of the volume M, N, P-e.g. the top
half of the cube-and also allow to compute finite surfaces-i.e. open
surfaces that do not end at the border of the cube.
Returns
-------
verts : (V, 3) array
Spatial coordinates for V unique mesh vertices. Coordinate order
matches input `volume` (M, N, P).
faces : (F, 3) array
Define triangular faces via referencing vertex indices from ``verts``.
This algorithm specifically outputs triangles, so each face has
exactly three indices.
normals : (V, 3) array
The normal direction at each vertex, as calculated from the
data.
values : (V, ) array
Gives a measure for the maximum value of the data in the local region
near each vertex. This can be used by visualization tools to apply
a colormap to the mesh.
Notes
-----
The algorithm [1] is an improved version of Chernyaev's Marching
Cubes 33 algorithm. It is an efficient algorithm that relies on
heavy use of lookup tables to handle the many different cases,
keeping the algorithm relatively easy. This implementation is
written in Cython, ported from Lewiner's C++ implementation.
To quantify the area of an isosurface generated by this algorithm, pass
verts and faces to `skimage.measure.mesh_surface_area`.
Regarding visualization of algorithm output, to contour a volume
named `myvolume` about the level 0.0, using the ``mayavi`` package::
>>>
>> from mayavi import mlab
>> verts, faces, _, _ = marching_cubes(myvolume, 0.0)
>> mlab.triangular_mesh([vert[0] for vert in verts],
[vert[1] for vert in verts],
[vert[2] for vert in verts],
faces)
>> mlab.show()
Similarly using the ``visvis`` package::
>>>
>> import visvis as vv
>> verts, faces, normals, values = marching_cubes(myvolume, 0.0)
>> vv.mesh(np.fliplr(verts), faces, normals, values)
>> vv.use().Run()
References
----------
.. [1] Thomas Lewiner, Helio Lopes, Antonio Wilson Vieira and Geovan
Tavares. Efficient implementation of Marching Cubes' cases with
topological guarantees. Journal of Graphics Tools 8(2)
pp. 1-15 (december 2003).
:DOI:`10.1080/10867651.2003.10487582`
.. [2] Lorensen, William and Harvey E. Cline. Marching Cubes: A High
Resolution 3D Surface Construction Algorithm. Computer Graphics
(SIGGRAPH 87 Proceedings) 21(4) July 1987, p. 163-170).
:DOI:`10.1145/37401.37422`
See Also
--------
skimage.measure.mesh_surface_area
"""
if method == 'lewiner':
return _marching_cubes_lewiner(volume, level, spacing,
gradient_direction, step_size,
allow_degenerate, use_classic=False, mask=mask)
elif method == 'lorensen':
return _marching_cubes_lewiner(volume, level, spacing,
gradient_direction, step_size,
allow_degenerate, use_classic=True, mask=mask)
elif method == '_lorensen':
if mask is not None:
raise NotImplementedError(
'Parameter `mask` is not implemented for method "_lorensen" '
'and will be ignored.'
)
return _marching_cubes_classic(volume, level, spacing,
gradient_direction)
else:
raise ValueError("method should be one of 'lewiner', 'lorensen' or "
"'_lorensen'.")
def marching_cubes_lewiner(volume, level=None, spacing=(1., 1., 1.),
gradient_direction='descent', step_size=1,
allow_degenerate=True, use_classic=False, mask=None):
"""
Lewiner marching cubes algorithm to find surfaces in 3d volumetric data.
In contrast to ``marching_cubes_classic()``, this algorithm is faster,
resolves ambiguities, and guarantees topologically correct results.
Therefore, this algorithm generally a better choice, unless there
is a specific need for the classic algorithm.
Parameters
----------
volume : (M, N, P) array
Input data volume to find isosurfaces. Will internally be
converted to float32 if necessary.
level : float
Contour value to search for isosurfaces in `volume`. If not
given or None, the average of the min and max of vol is used.
spacing : length-3 tuple of floats
Voxel spacing in spatial dimensions corresponding to numpy array
indexing dimensions (M, N, P) as in `volume`.
gradient_direction : string
Controls if the mesh was generated from an isosurface with gradient
descent toward objects of interest (the default), or the opposite,
considering the *left-hand* rule.
The two options are:
* descent : Object was greater than exterior
* ascent : Exterior was greater than object
step_size : int
Step size in voxels. Default 1. Larger steps yield faster but
coarser results. The result will always be topologically correct
though.
allow_degenerate : bool
Whether to allow degenerate (i.e. zero-area) triangles in the
end-result. Default True. If False, degenerate triangles are
removed, at the cost of making the algorithm slower.
use_classic : bool
If given and True, the classic marching cubes by Lorensen (1987)
is used. This option is included for reference purposes. Note
that this algorithm has ambiguities and is not guaranteed to
produce a topologically correct result. The results with using
this option are *not* generally the same as the
``marching_cubes_classic()`` function.
mask : (M, N, P) array
Boolean array. The marching cube algorithm will be computed only on
True elements. This will save computational time when interfaces
are located within certain region of the volume M, N, P-e.g. the top
half of the cube-and also allow to compute finite surfaces-i.e. open
surfaces that do not end at the border of the cube.
Returns
-------
verts : (V, 3) array
Spatial coordinates for V unique mesh vertices. Coordinate order
matches input `volume` (M, N, P).
faces : (F, 3) array
Define triangular faces via referencing vertex indices from ``verts``.
This algorithm specifically outputs triangles, so each face has
exactly three indices.
normals : (V, 3) array
The normal direction at each vertex, as calculated from the
data.
values : (V, ) array
Gives a measure for the maximum value of the data in the local region
near each vertex. This can be used by visualization tools to apply
a colormap to the mesh.
Notes
-----
The algorithm [1] is an improved version of Chernyaev's Marching
Cubes 33 algorithm. It is an efficient algorithm that relies on
heavy use of lookup tables to handle the many different cases,
keeping the algorithm relatively easy. This implementation is
written in Cython, ported from Lewiner's C++ implementation.
To quantify the area of an isosurface generated by this algorithm, pass
verts and faces to `skimage.measure.mesh_surface_area`.
Regarding visualization of algorithm output, to contour a volume
named `myvolume` about the level 0.0, using the ``mayavi`` package::
>>> from mayavi import mlab # doctest: +SKIP
>>> verts, faces, normals, values = marching_cubes_lewiner(myvolume, 0.0) # doctest: +SKIP
>>> mlab.triangular_mesh([vert[0] for vert in verts],
... [vert[1] for vert in verts],
... [vert[2] for vert in verts],
... faces) # doctest: +SKIP
>>> mlab.show() # doctest: +SKIP
Similarly using the ``visvis`` package::
>>> import visvis as vv # doctest: +SKIP
>>> verts, faces, normals, values = marching_cubes_lewiner(myvolume, 0.0) # doctest: +SKIP
>>> vv.mesh(np.fliplr(verts), faces, normals, values) # doctest: +SKIP
>>> vv.use().Run() # doctest: +SKIP
References
----------
.. [1] Thomas Lewiner, Helio Lopes, Antonio Wilson Vieira and Geovan
Tavares. Efficient implementation of Marching Cubes' cases with
topological guarantees. Journal of Graphics Tools 8(2)
pp. 1-15 (december 2003).
:DOI:`10.1080/10867651.2003.10487582`
See Also
--------
skimage.measure.marching_cubes
skimage.measure.mesh_surface_area
"""
# Deprecate the function in favor of marching_cubes
warnings.warn("marching_cubes_lewiner is deprecated in favor of "
"marching_cubes. marching_cubes_lewiner will "
"be removed in version 0.19",
FutureWarning, stacklevel=2)
return _marching_cubes_lewiner(volume, level, spacing, gradient_direction,
step_size, allow_degenerate, use_classic, mask)
def _marching_cubes_lewiner(volume, level, spacing, gradient_direction,
step_size, allow_degenerate, use_classic, mask):
"""Lewiner et al. algorithm for marching cubes. See
marching_cubes_lewiner for documentation.
"""
# Check volume and ensure its in the format that the alg needs
if not isinstance(volume, np.ndarray) or (volume.ndim != 3):
raise ValueError('Input volume should be a 3D numpy array.')
if volume.shape[0] < 2 or volume.shape[1] < 2 or volume.shape[2] < 2:
raise ValueError("Input array must be at least 2x2x2.")
volume = np.ascontiguousarray(volume,
np.float32) # no copy if not necessary
# Check/convert other inputs:
# level
if level is None:
level = 0.5 * (volume.min() + volume.max())
else:
level = float(level)
if level < volume.min() or level > volume.max():
raise ValueError("Surface level must be within volume data range.")
# spacing
if len(spacing) != 3:
raise ValueError("`spacing` must consist of three floats.")
# step_size
step_size = int(step_size)
if step_size < 1:
raise ValueError('step_size must be at least one.')
# use_classic
use_classic = bool(use_classic)
# Get LutProvider class (reuse if possible)
L = _get_mc_luts()
# Check if a mask array is passed
if mask is not None:
if not mask.shape == volume.shape:
raise ValueError('volume and mask must have the same shape.')
# Apply algorithm
func = _marching_cubes_lewiner_cy.marching_cubes
vertices, faces, normals, values = func(volume, level, L,
step_size, use_classic, mask)
if not len(vertices):
raise RuntimeError('No surface found at the given iso value.')
# Output in z-y-x order, as is common in skimage
vertices = np.fliplr(vertices)
normals = np.fliplr(normals)
# Finishing touches to output
faces.shape = -1, 3
if gradient_direction == 'descent':
# MC implementation is right-handed, but gradient_direction is
# left-handed
faces = np.fliplr(faces)
elif not gradient_direction == 'ascent':
raise ValueError("Incorrect input %s in `gradient_direction`, see "
"docstring." % (gradient_direction))
if not np.array_equal(spacing, (1, 1, 1)):
vertices = vertices * np.r_[spacing]
if allow_degenerate:
return vertices, faces, normals, values
else:
fun = _marching_cubes_lewiner_cy.remove_degenerate_faces
return fun(vertices.astype(np.float32), faces, normals, values)
def _to_array(args):
shape, text = args
byts = base64.decodebytes(text.encode('utf-8'))
ar = np.frombuffer(byts, dtype='int8')
ar.shape = shape
return ar
# Map an edge-index to two relative pixel positions. The ege index
# represents a point that lies somewhere in between these pixels.
# Linear interpolation should be used to determine where it is exactly.
# 0
# 3 1 -> 0x
# 2 xx
EDGETORELATIVEPOSX = np.array([ [0,1],[1,1],[1,0],[0,0], [0,1],[1,1],[1,0],[0,0], [0,0],[1,1],[1,1],[0,0] ], 'int8')
EDGETORELATIVEPOSY = np.array([ [0,0],[0,1],[1,1],[1,0], [0,0],[0,1],[1,1],[1,0], [0,0],[0,0],[1,1],[1,1] ], 'int8')
EDGETORELATIVEPOSZ = np.array([ [0,0],[0,0],[0,0],[0,0], [1,1],[1,1],[1,1],[1,1], [0,1],[0,1],[0,1],[0,1] ], 'int8')
def _get_mc_luts():
""" Kind of lazy obtaining of the luts.
"""
if not hasattr(mcluts, 'THE_LUTS'):
mcluts.THE_LUTS = _marching_cubes_lewiner_cy.LutProvider(
EDGETORELATIVEPOSX, EDGETORELATIVEPOSY, EDGETORELATIVEPOSZ,
_to_array(mcluts.CASESCLASSIC), _to_array(mcluts.CASES),
_to_array(mcluts.TILING1), _to_array(mcluts.TILING2), _to_array(mcluts.TILING3_1), _to_array(mcluts.TILING3_2),
_to_array(mcluts.TILING4_1), _to_array(mcluts.TILING4_2), _to_array(mcluts.TILING5), _to_array(mcluts.TILING6_1_1),
_to_array(mcluts.TILING6_1_2), _to_array(mcluts.TILING6_2), _to_array(mcluts.TILING7_1),
_to_array(mcluts.TILING7_2), _to_array(mcluts.TILING7_3), _to_array(mcluts.TILING7_4_1),
_to_array(mcluts.TILING7_4_2), _to_array(mcluts.TILING8), _to_array(mcluts.TILING9),
_to_array(mcluts.TILING10_1_1), _to_array(mcluts.TILING10_1_1_), _to_array(mcluts.TILING10_1_2),
_to_array(mcluts.TILING10_2), _to_array(mcluts.TILING10_2_), _to_array(mcluts.TILING11),
_to_array(mcluts.TILING12_1_1), _to_array(mcluts.TILING12_1_1_), _to_array(mcluts.TILING12_1_2),
_to_array(mcluts.TILING12_2), _to_array(mcluts.TILING12_2_), _to_array(mcluts.TILING13_1),
_to_array(mcluts.TILING13_1_), _to_array(mcluts.TILING13_2), _to_array(mcluts.TILING13_2_),
_to_array(mcluts.TILING13_3), _to_array(mcluts.TILING13_3_), _to_array(mcluts.TILING13_4),
_to_array(mcluts.TILING13_5_1), _to_array(mcluts.TILING13_5_2), _to_array(mcluts.TILING14),
_to_array(mcluts.TEST3), _to_array(mcluts.TEST4), _to_array(mcluts.TEST6),
_to_array(mcluts.TEST7), _to_array(mcluts.TEST10), _to_array(mcluts.TEST12),
_to_array(mcluts.TEST13), _to_array(mcluts.SUBCONFIG13),
)
return mcluts.THE_LUTS