389 lines
17 KiB
Python
389 lines
17 KiB
Python
|
import warnings
|
||
|
import base64
|
||
|
|
||
|
import numpy as np
|
||
|
|
||
|
from . import _marching_cubes_lewiner_luts as mcluts
|
||
|
from . import _marching_cubes_lewiner_cy
|
||
|
from ._marching_cubes_classic import _marching_cubes_classic
|
||
|
|
||
|
|
||
|
def marching_cubes(volume, level=None, *, spacing=(1., 1., 1.),
|
||
|
gradient_direction='descent', step_size=1,
|
||
|
allow_degenerate=True, method='lewiner', mask=None):
|
||
|
"""Marching cubes algorithm to find surfaces in 3d volumetric data.
|
||
|
|
||
|
In contrast with Lorensen et al. approach [2], Lewiner et
|
||
|
al. algorithm is faster, resolves ambiguities, and guarantees
|
||
|
topologically correct results. Therefore, this algorithm generally
|
||
|
a better choice.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
volume : (M, N, P) array
|
||
|
Input data volume to find isosurfaces. Will internally be
|
||
|
converted to float32 if necessary.
|
||
|
level : float
|
||
|
Contour value to search for isosurfaces in `volume`. If not
|
||
|
given or None, the average of the min and max of vol is used.
|
||
|
spacing : length-3 tuple of floats
|
||
|
Voxel spacing in spatial dimensions corresponding to numpy array
|
||
|
indexing dimensions (M, N, P) as in `volume`.
|
||
|
gradient_direction : string
|
||
|
Controls if the mesh was generated from an isosurface with gradient
|
||
|
descent toward objects of interest (the default), or the opposite,
|
||
|
considering the *left-hand* rule.
|
||
|
The two options are:
|
||
|
* descent : Object was greater than exterior
|
||
|
* ascent : Exterior was greater than object
|
||
|
step_size : int
|
||
|
Step size in voxels. Default 1. Larger steps yield faster but
|
||
|
coarser results. The result will always be topologically correct
|
||
|
though.
|
||
|
allow_degenerate : bool
|
||
|
Whether to allow degenerate (i.e. zero-area) triangles in the
|
||
|
end-result. Default True. If False, degenerate triangles are
|
||
|
removed, at the cost of making the algorithm slower.
|
||
|
method: str
|
||
|
One of 'lewiner', 'lorensen' or '_lorensen'. Specify witch of
|
||
|
Lewiner et al. or Lorensen et al. method will be used. The
|
||
|
'_lorensen' flag correspond to an old implementation that will
|
||
|
be deprecated in version 0.19.
|
||
|
mask : (M, N, P) array
|
||
|
Boolean array. The marching cube algorithm will be computed only on
|
||
|
True elements. This will save computational time when interfaces
|
||
|
are located within certain region of the volume M, N, P-e.g. the top
|
||
|
half of the cube-and also allow to compute finite surfaces-i.e. open
|
||
|
surfaces that do not end at the border of the cube.
|
||
|
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
verts : (V, 3) array
|
||
|
Spatial coordinates for V unique mesh vertices. Coordinate order
|
||
|
matches input `volume` (M, N, P).
|
||
|
faces : (F, 3) array
|
||
|
Define triangular faces via referencing vertex indices from ``verts``.
|
||
|
This algorithm specifically outputs triangles, so each face has
|
||
|
exactly three indices.
|
||
|
normals : (V, 3) array
|
||
|
The normal direction at each vertex, as calculated from the
|
||
|
data.
|
||
|
values : (V, ) array
|
||
|
Gives a measure for the maximum value of the data in the local region
|
||
|
near each vertex. This can be used by visualization tools to apply
|
||
|
a colormap to the mesh.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The algorithm [1] is an improved version of Chernyaev's Marching
|
||
|
Cubes 33 algorithm. It is an efficient algorithm that relies on
|
||
|
heavy use of lookup tables to handle the many different cases,
|
||
|
keeping the algorithm relatively easy. This implementation is
|
||
|
written in Cython, ported from Lewiner's C++ implementation.
|
||
|
|
||
|
To quantify the area of an isosurface generated by this algorithm, pass
|
||
|
verts and faces to `skimage.measure.mesh_surface_area`.
|
||
|
|
||
|
Regarding visualization of algorithm output, to contour a volume
|
||
|
named `myvolume` about the level 0.0, using the ``mayavi`` package::
|
||
|
|
||
|
>>>
|
||
|
>> from mayavi import mlab
|
||
|
>> verts, faces, _, _ = marching_cubes(myvolume, 0.0)
|
||
|
>> mlab.triangular_mesh([vert[0] for vert in verts],
|
||
|
[vert[1] for vert in verts],
|
||
|
[vert[2] for vert in verts],
|
||
|
faces)
|
||
|
>> mlab.show()
|
||
|
|
||
|
Similarly using the ``visvis`` package::
|
||
|
|
||
|
>>>
|
||
|
>> import visvis as vv
|
||
|
>> verts, faces, normals, values = marching_cubes(myvolume, 0.0)
|
||
|
>> vv.mesh(np.fliplr(verts), faces, normals, values)
|
||
|
>> vv.use().Run()
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Thomas Lewiner, Helio Lopes, Antonio Wilson Vieira and Geovan
|
||
|
Tavares. Efficient implementation of Marching Cubes' cases with
|
||
|
topological guarantees. Journal of Graphics Tools 8(2)
|
||
|
pp. 1-15 (december 2003).
|
||
|
:DOI:`10.1080/10867651.2003.10487582`
|
||
|
.. [2] Lorensen, William and Harvey E. Cline. Marching Cubes: A High
|
||
|
Resolution 3D Surface Construction Algorithm. Computer Graphics
|
||
|
(SIGGRAPH 87 Proceedings) 21(4) July 1987, p. 163-170).
|
||
|
:DOI:`10.1145/37401.37422`
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
skimage.measure.mesh_surface_area
|
||
|
|
||
|
"""
|
||
|
|
||
|
if method == 'lewiner':
|
||
|
return _marching_cubes_lewiner(volume, level, spacing,
|
||
|
gradient_direction, step_size,
|
||
|
allow_degenerate, use_classic=False, mask=mask)
|
||
|
elif method == 'lorensen':
|
||
|
return _marching_cubes_lewiner(volume, level, spacing,
|
||
|
gradient_direction, step_size,
|
||
|
allow_degenerate, use_classic=True, mask=mask)
|
||
|
elif method == '_lorensen':
|
||
|
if mask is not None:
|
||
|
raise NotImplementedError(
|
||
|
'Parameter `mask` is not implemented for method "_lorensen" '
|
||
|
'and will be ignored.'
|
||
|
)
|
||
|
return _marching_cubes_classic(volume, level, spacing,
|
||
|
gradient_direction)
|
||
|
else:
|
||
|
raise ValueError("method should be one of 'lewiner', 'lorensen' or "
|
||
|
"'_lorensen'.")
|
||
|
|
||
|
|
||
|
def marching_cubes_lewiner(volume, level=None, spacing=(1., 1., 1.),
|
||
|
gradient_direction='descent', step_size=1,
|
||
|
allow_degenerate=True, use_classic=False, mask=None):
|
||
|
"""
|
||
|
Lewiner marching cubes algorithm to find surfaces in 3d volumetric data.
|
||
|
|
||
|
In contrast to ``marching_cubes_classic()``, this algorithm is faster,
|
||
|
resolves ambiguities, and guarantees topologically correct results.
|
||
|
Therefore, this algorithm generally a better choice, unless there
|
||
|
is a specific need for the classic algorithm.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
volume : (M, N, P) array
|
||
|
Input data volume to find isosurfaces. Will internally be
|
||
|
converted to float32 if necessary.
|
||
|
level : float
|
||
|
Contour value to search for isosurfaces in `volume`. If not
|
||
|
given or None, the average of the min and max of vol is used.
|
||
|
spacing : length-3 tuple of floats
|
||
|
Voxel spacing in spatial dimensions corresponding to numpy array
|
||
|
indexing dimensions (M, N, P) as in `volume`.
|
||
|
gradient_direction : string
|
||
|
Controls if the mesh was generated from an isosurface with gradient
|
||
|
descent toward objects of interest (the default), or the opposite,
|
||
|
considering the *left-hand* rule.
|
||
|
The two options are:
|
||
|
* descent : Object was greater than exterior
|
||
|
* ascent : Exterior was greater than object
|
||
|
step_size : int
|
||
|
Step size in voxels. Default 1. Larger steps yield faster but
|
||
|
coarser results. The result will always be topologically correct
|
||
|
though.
|
||
|
allow_degenerate : bool
|
||
|
Whether to allow degenerate (i.e. zero-area) triangles in the
|
||
|
end-result. Default True. If False, degenerate triangles are
|
||
|
removed, at the cost of making the algorithm slower.
|
||
|
use_classic : bool
|
||
|
If given and True, the classic marching cubes by Lorensen (1987)
|
||
|
is used. This option is included for reference purposes. Note
|
||
|
that this algorithm has ambiguities and is not guaranteed to
|
||
|
produce a topologically correct result. The results with using
|
||
|
this option are *not* generally the same as the
|
||
|
``marching_cubes_classic()`` function.
|
||
|
mask : (M, N, P) array
|
||
|
Boolean array. The marching cube algorithm will be computed only on
|
||
|
True elements. This will save computational time when interfaces
|
||
|
are located within certain region of the volume M, N, P-e.g. the top
|
||
|
half of the cube-and also allow to compute finite surfaces-i.e. open
|
||
|
surfaces that do not end at the border of the cube.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
verts : (V, 3) array
|
||
|
Spatial coordinates for V unique mesh vertices. Coordinate order
|
||
|
matches input `volume` (M, N, P).
|
||
|
faces : (F, 3) array
|
||
|
Define triangular faces via referencing vertex indices from ``verts``.
|
||
|
This algorithm specifically outputs triangles, so each face has
|
||
|
exactly three indices.
|
||
|
normals : (V, 3) array
|
||
|
The normal direction at each vertex, as calculated from the
|
||
|
data.
|
||
|
values : (V, ) array
|
||
|
Gives a measure for the maximum value of the data in the local region
|
||
|
near each vertex. This can be used by visualization tools to apply
|
||
|
a colormap to the mesh.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The algorithm [1] is an improved version of Chernyaev's Marching
|
||
|
Cubes 33 algorithm. It is an efficient algorithm that relies on
|
||
|
heavy use of lookup tables to handle the many different cases,
|
||
|
keeping the algorithm relatively easy. This implementation is
|
||
|
written in Cython, ported from Lewiner's C++ implementation.
|
||
|
|
||
|
To quantify the area of an isosurface generated by this algorithm, pass
|
||
|
verts and faces to `skimage.measure.mesh_surface_area`.
|
||
|
|
||
|
Regarding visualization of algorithm output, to contour a volume
|
||
|
named `myvolume` about the level 0.0, using the ``mayavi`` package::
|
||
|
|
||
|
>>> from mayavi import mlab # doctest: +SKIP
|
||
|
>>> verts, faces, normals, values = marching_cubes_lewiner(myvolume, 0.0) # doctest: +SKIP
|
||
|
>>> mlab.triangular_mesh([vert[0] for vert in verts],
|
||
|
... [vert[1] for vert in verts],
|
||
|
... [vert[2] for vert in verts],
|
||
|
... faces) # doctest: +SKIP
|
||
|
>>> mlab.show() # doctest: +SKIP
|
||
|
|
||
|
Similarly using the ``visvis`` package::
|
||
|
|
||
|
>>> import visvis as vv # doctest: +SKIP
|
||
|
>>> verts, faces, normals, values = marching_cubes_lewiner(myvolume, 0.0) # doctest: +SKIP
|
||
|
>>> vv.mesh(np.fliplr(verts), faces, normals, values) # doctest: +SKIP
|
||
|
>>> vv.use().Run() # doctest: +SKIP
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Thomas Lewiner, Helio Lopes, Antonio Wilson Vieira and Geovan
|
||
|
Tavares. Efficient implementation of Marching Cubes' cases with
|
||
|
topological guarantees. Journal of Graphics Tools 8(2)
|
||
|
pp. 1-15 (december 2003).
|
||
|
:DOI:`10.1080/10867651.2003.10487582`
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
skimage.measure.marching_cubes
|
||
|
skimage.measure.mesh_surface_area
|
||
|
|
||
|
"""
|
||
|
|
||
|
# Deprecate the function in favor of marching_cubes
|
||
|
warnings.warn("marching_cubes_lewiner is deprecated in favor of "
|
||
|
"marching_cubes. marching_cubes_lewiner will "
|
||
|
"be removed in version 0.19",
|
||
|
FutureWarning, stacklevel=2)
|
||
|
|
||
|
return _marching_cubes_lewiner(volume, level, spacing, gradient_direction,
|
||
|
step_size, allow_degenerate, use_classic, mask)
|
||
|
|
||
|
|
||
|
def _marching_cubes_lewiner(volume, level, spacing, gradient_direction,
|
||
|
step_size, allow_degenerate, use_classic, mask):
|
||
|
"""Lewiner et al. algorithm for marching cubes. See
|
||
|
marching_cubes_lewiner for documentation.
|
||
|
|
||
|
"""
|
||
|
|
||
|
# Check volume and ensure its in the format that the alg needs
|
||
|
if not isinstance(volume, np.ndarray) or (volume.ndim != 3):
|
||
|
raise ValueError('Input volume should be a 3D numpy array.')
|
||
|
if volume.shape[0] < 2 or volume.shape[1] < 2 or volume.shape[2] < 2:
|
||
|
raise ValueError("Input array must be at least 2x2x2.")
|
||
|
volume = np.ascontiguousarray(volume,
|
||
|
np.float32) # no copy if not necessary
|
||
|
|
||
|
# Check/convert other inputs:
|
||
|
# level
|
||
|
if level is None:
|
||
|
level = 0.5 * (volume.min() + volume.max())
|
||
|
else:
|
||
|
level = float(level)
|
||
|
if level < volume.min() or level > volume.max():
|
||
|
raise ValueError("Surface level must be within volume data range.")
|
||
|
# spacing
|
||
|
if len(spacing) != 3:
|
||
|
raise ValueError("`spacing` must consist of three floats.")
|
||
|
# step_size
|
||
|
step_size = int(step_size)
|
||
|
if step_size < 1:
|
||
|
raise ValueError('step_size must be at least one.')
|
||
|
# use_classic
|
||
|
use_classic = bool(use_classic)
|
||
|
|
||
|
# Get LutProvider class (reuse if possible)
|
||
|
L = _get_mc_luts()
|
||
|
|
||
|
# Check if a mask array is passed
|
||
|
if mask is not None:
|
||
|
if not mask.shape == volume.shape:
|
||
|
raise ValueError('volume and mask must have the same shape.')
|
||
|
|
||
|
# Apply algorithm
|
||
|
func = _marching_cubes_lewiner_cy.marching_cubes
|
||
|
vertices, faces, normals, values = func(volume, level, L,
|
||
|
step_size, use_classic, mask)
|
||
|
|
||
|
if not len(vertices):
|
||
|
raise RuntimeError('No surface found at the given iso value.')
|
||
|
|
||
|
# Output in z-y-x order, as is common in skimage
|
||
|
vertices = np.fliplr(vertices)
|
||
|
normals = np.fliplr(normals)
|
||
|
|
||
|
# Finishing touches to output
|
||
|
faces.shape = -1, 3
|
||
|
if gradient_direction == 'descent':
|
||
|
# MC implementation is right-handed, but gradient_direction is
|
||
|
# left-handed
|
||
|
faces = np.fliplr(faces)
|
||
|
elif not gradient_direction == 'ascent':
|
||
|
raise ValueError("Incorrect input %s in `gradient_direction`, see "
|
||
|
"docstring." % (gradient_direction))
|
||
|
if not np.array_equal(spacing, (1, 1, 1)):
|
||
|
vertices = vertices * np.r_[spacing]
|
||
|
|
||
|
if allow_degenerate:
|
||
|
return vertices, faces, normals, values
|
||
|
else:
|
||
|
fun = _marching_cubes_lewiner_cy.remove_degenerate_faces
|
||
|
return fun(vertices.astype(np.float32), faces, normals, values)
|
||
|
|
||
|
|
||
|
def _to_array(args):
|
||
|
shape, text = args
|
||
|
byts = base64.decodebytes(text.encode('utf-8'))
|
||
|
ar = np.frombuffer(byts, dtype='int8')
|
||
|
ar.shape = shape
|
||
|
return ar
|
||
|
|
||
|
|
||
|
# Map an edge-index to two relative pixel positions. The ege index
|
||
|
# represents a point that lies somewhere in between these pixels.
|
||
|
# Linear interpolation should be used to determine where it is exactly.
|
||
|
# 0
|
||
|
# 3 1 -> 0x
|
||
|
# 2 xx
|
||
|
EDGETORELATIVEPOSX = np.array([ [0,1],[1,1],[1,0],[0,0], [0,1],[1,1],[1,0],[0,0], [0,0],[1,1],[1,1],[0,0] ], 'int8')
|
||
|
EDGETORELATIVEPOSY = np.array([ [0,0],[0,1],[1,1],[1,0], [0,0],[0,1],[1,1],[1,0], [0,0],[0,0],[1,1],[1,1] ], 'int8')
|
||
|
EDGETORELATIVEPOSZ = np.array([ [0,0],[0,0],[0,0],[0,0], [1,1],[1,1],[1,1],[1,1], [0,1],[0,1],[0,1],[0,1] ], 'int8')
|
||
|
|
||
|
|
||
|
def _get_mc_luts():
|
||
|
""" Kind of lazy obtaining of the luts.
|
||
|
"""
|
||
|
if not hasattr(mcluts, 'THE_LUTS'):
|
||
|
|
||
|
mcluts.THE_LUTS = _marching_cubes_lewiner_cy.LutProvider(
|
||
|
EDGETORELATIVEPOSX, EDGETORELATIVEPOSY, EDGETORELATIVEPOSZ,
|
||
|
|
||
|
_to_array(mcluts.CASESCLASSIC), _to_array(mcluts.CASES),
|
||
|
|
||
|
_to_array(mcluts.TILING1), _to_array(mcluts.TILING2), _to_array(mcluts.TILING3_1), _to_array(mcluts.TILING3_2),
|
||
|
_to_array(mcluts.TILING4_1), _to_array(mcluts.TILING4_2), _to_array(mcluts.TILING5), _to_array(mcluts.TILING6_1_1),
|
||
|
_to_array(mcluts.TILING6_1_2), _to_array(mcluts.TILING6_2), _to_array(mcluts.TILING7_1),
|
||
|
_to_array(mcluts.TILING7_2), _to_array(mcluts.TILING7_3), _to_array(mcluts.TILING7_4_1),
|
||
|
_to_array(mcluts.TILING7_4_2), _to_array(mcluts.TILING8), _to_array(mcluts.TILING9),
|
||
|
_to_array(mcluts.TILING10_1_1), _to_array(mcluts.TILING10_1_1_), _to_array(mcluts.TILING10_1_2),
|
||
|
_to_array(mcluts.TILING10_2), _to_array(mcluts.TILING10_2_), _to_array(mcluts.TILING11),
|
||
|
_to_array(mcluts.TILING12_1_1), _to_array(mcluts.TILING12_1_1_), _to_array(mcluts.TILING12_1_2),
|
||
|
_to_array(mcluts.TILING12_2), _to_array(mcluts.TILING12_2_), _to_array(mcluts.TILING13_1),
|
||
|
_to_array(mcluts.TILING13_1_), _to_array(mcluts.TILING13_2), _to_array(mcluts.TILING13_2_),
|
||
|
_to_array(mcluts.TILING13_3), _to_array(mcluts.TILING13_3_), _to_array(mcluts.TILING13_4),
|
||
|
_to_array(mcluts.TILING13_5_1), _to_array(mcluts.TILING13_5_2), _to_array(mcluts.TILING14),
|
||
|
|
||
|
_to_array(mcluts.TEST3), _to_array(mcluts.TEST4), _to_array(mcluts.TEST6),
|
||
|
_to_array(mcluts.TEST7), _to_array(mcluts.TEST10), _to_array(mcluts.TEST12),
|
||
|
_to_array(mcluts.TEST13), _to_array(mcluts.SUBCONFIG13),
|
||
|
)
|
||
|
|
||
|
return mcluts.THE_LUTS
|