Vehicle-Anti-Theft-Face-Rec.../venv/Lib/site-packages/skimage/util/arraycrop.py

63 lines
2.1 KiB
Python

"""
The arraycrop module contains functions to crop values from the edges of an
n-dimensional array.
"""
import numpy as np
__all__ = ['crop']
def crop(ar, crop_width, copy=False, order='K'):
"""Crop array `ar` by `crop_width` along each dimension.
Parameters
----------
ar : array-like of rank N
Input array.
crop_width : {sequence, int}
Number of values to remove from the edges of each axis.
``((before_1, after_1),`` ... ``(before_N, after_N))`` specifies
unique crop widths at the start and end of each axis.
``((before, after),)`` specifies a fixed start and end crop
for every axis.
``(n,)`` or ``n`` for integer ``n`` is a shortcut for
before = after = ``n`` for all axes.
copy : bool, optional
If `True`, ensure the returned array is a contiguous copy. Normally,
a crop operation will return a discontiguous view of the underlying
input array.
order : {'C', 'F', 'A', 'K'}, optional
If ``copy==True``, control the memory layout of the copy. See
``np.copy``.
Returns
-------
cropped : array
The cropped array. If ``copy=False`` (default), this is a sliced
view of the input array.
"""
# Since arraycrop is in the critical import path, we lazy import distutils
# to check the version of numpy
# After numpy 1.15, a new backward compatible function have been
# implemented.
# See https://github.com/numpy/numpy/pull/11966
from distutils.version import LooseVersion as Version
old_numpy = Version(np.__version__) < Version('1.16')
if old_numpy:
from numpy.lib.arraypad import _validate_lengths
else:
from numpy.lib.arraypad import _as_pairs
ar = np.array(ar, copy=False)
if old_numpy:
crops = _validate_lengths(ar, crop_width)
else:
crops = _as_pairs(crop_width, ar.ndim, as_index=True)
slices = tuple(slice(a, ar.shape[i] - b)
for i, (a, b) in enumerate(crops))
if copy:
cropped = np.array(ar[slices], order=order, copy=True)
else:
cropped = ar[slices]
return cropped