""" The arraycrop module contains functions to crop values from the edges of an n-dimensional array. """ import numpy as np __all__ = ['crop'] def crop(ar, crop_width, copy=False, order='K'): """Crop array `ar` by `crop_width` along each dimension. Parameters ---------- ar : array-like of rank N Input array. crop_width : {sequence, int} Number of values to remove from the edges of each axis. ``((before_1, after_1),`` ... ``(before_N, after_N))`` specifies unique crop widths at the start and end of each axis. ``((before, after),)`` specifies a fixed start and end crop for every axis. ``(n,)`` or ``n`` for integer ``n`` is a shortcut for before = after = ``n`` for all axes. copy : bool, optional If `True`, ensure the returned array is a contiguous copy. Normally, a crop operation will return a discontiguous view of the underlying input array. order : {'C', 'F', 'A', 'K'}, optional If ``copy==True``, control the memory layout of the copy. See ``np.copy``. Returns ------- cropped : array The cropped array. If ``copy=False`` (default), this is a sliced view of the input array. """ # Since arraycrop is in the critical import path, we lazy import distutils # to check the version of numpy # After numpy 1.15, a new backward compatible function have been # implemented. # See https://github.com/numpy/numpy/pull/11966 from distutils.version import LooseVersion as Version old_numpy = Version(np.__version__) < Version('1.16') if old_numpy: from numpy.lib.arraypad import _validate_lengths else: from numpy.lib.arraypad import _as_pairs ar = np.array(ar, copy=False) if old_numpy: crops = _validate_lengths(ar, crop_width) else: crops = _as_pairs(crop_width, ar.ndim, as_index=True) slices = tuple(slice(a, ar.shape[i] - b) for i, (a, b) in enumerate(crops)) if copy: cropped = np.array(ar[slices], order=order, copy=True) else: cropped = ar[slices] return cropped