90 lines
3.4 KiB
Python
90 lines
3.4 KiB
Python
"""Test the 20news downloader, if the data is available,
|
|
or if specifically requested via environment variable
|
|
(e.g. for travis cron job)."""
|
|
from functools import partial
|
|
|
|
import numpy as np
|
|
import scipy.sparse as sp
|
|
|
|
from sklearn.utils._testing import assert_allclose_dense_sparse
|
|
from sklearn.datasets.tests.test_common import check_return_X_y
|
|
from sklearn.preprocessing import normalize
|
|
|
|
|
|
def test_20news(fetch_20newsgroups_fxt):
|
|
data = fetch_20newsgroups_fxt(subset='all', shuffle=False)
|
|
|
|
# Extract a reduced dataset
|
|
data2cats = fetch_20newsgroups_fxt(
|
|
subset='all', categories=data.target_names[-1:-3:-1], shuffle=False)
|
|
# Check that the ordering of the target_names is the same
|
|
# as the ordering in the full dataset
|
|
assert data2cats.target_names == data.target_names[-2:]
|
|
# Assert that we have only 0 and 1 as labels
|
|
assert np.unique(data2cats.target).tolist() == [0, 1]
|
|
|
|
# Check that the number of filenames is consistent with data/target
|
|
assert len(data2cats.filenames) == len(data2cats.target)
|
|
assert len(data2cats.filenames) == len(data2cats.data)
|
|
|
|
# Check that the first entry of the reduced dataset corresponds to
|
|
# the first entry of the corresponding category in the full dataset
|
|
entry1 = data2cats.data[0]
|
|
category = data2cats.target_names[data2cats.target[0]]
|
|
label = data.target_names.index(category)
|
|
entry2 = data.data[np.where(data.target == label)[0][0]]
|
|
assert entry1 == entry2
|
|
|
|
# check that return_X_y option
|
|
X, y = fetch_20newsgroups_fxt(subset='all', shuffle=False, return_X_y=True)
|
|
assert len(X) == len(data.data)
|
|
assert y.shape == data.target.shape
|
|
|
|
|
|
def test_20news_length_consistency(fetch_20newsgroups_fxt):
|
|
"""Checks the length consistencies within the bunch
|
|
|
|
This is a non-regression test for a bug present in 0.16.1.
|
|
"""
|
|
# Extract the full dataset
|
|
data = fetch_20newsgroups_fxt(subset='all')
|
|
assert len(data['data']) == len(data.data)
|
|
assert len(data['target']) == len(data.target)
|
|
assert len(data['filenames']) == len(data.filenames)
|
|
|
|
|
|
def test_20news_vectorized(fetch_20newsgroups_vectorized_fxt):
|
|
# test subset = train
|
|
bunch = fetch_20newsgroups_vectorized_fxt(subset="train")
|
|
assert sp.isspmatrix_csr(bunch.data)
|
|
assert bunch.data.shape == (11314, 130107)
|
|
assert bunch.target.shape[0] == 11314
|
|
assert bunch.data.dtype == np.float64
|
|
|
|
# test subset = test
|
|
bunch = fetch_20newsgroups_vectorized_fxt(subset="test")
|
|
assert sp.isspmatrix_csr(bunch.data)
|
|
assert bunch.data.shape == (7532, 130107)
|
|
assert bunch.target.shape[0] == 7532
|
|
assert bunch.data.dtype == np.float64
|
|
|
|
# test return_X_y option
|
|
fetch_func = partial(fetch_20newsgroups_vectorized_fxt, subset='test')
|
|
check_return_X_y(bunch, fetch_func)
|
|
|
|
# test subset = all
|
|
bunch = fetch_20newsgroups_vectorized_fxt(subset='all')
|
|
assert sp.isspmatrix_csr(bunch.data)
|
|
assert bunch.data.shape == (11314 + 7532, 130107)
|
|
assert bunch.target.shape[0] == 11314 + 7532
|
|
assert bunch.data.dtype == np.float64
|
|
|
|
|
|
def test_20news_normalization(fetch_20newsgroups_vectorized_fxt):
|
|
X = fetch_20newsgroups_vectorized_fxt(normalize=False)
|
|
X_ = fetch_20newsgroups_vectorized_fxt(normalize=True)
|
|
X_norm = X_['data'][:100]
|
|
X = X['data'][:100]
|
|
|
|
assert_allclose_dense_sparse(X_norm, normalize(X))
|
|
assert np.allclose(np.linalg.norm(X_norm.todense(), axis=1), 1)
|