Vehicle-Anti-Theft-Face-Rec.../venv/Lib/site-packages/sklearn/datasets/tests/test_20news.py

91 lines
3.4 KiB
Python
Raw Normal View History

2020-11-12 16:05:57 +00:00
"""Test the 20news downloader, if the data is available,
or if specifically requested via environment variable
(e.g. for travis cron job)."""
from functools import partial
import numpy as np
import scipy.sparse as sp
from sklearn.utils._testing import assert_allclose_dense_sparse
from sklearn.datasets.tests.test_common import check_return_X_y
from sklearn.preprocessing import normalize
def test_20news(fetch_20newsgroups_fxt):
data = fetch_20newsgroups_fxt(subset='all', shuffle=False)
# Extract a reduced dataset
data2cats = fetch_20newsgroups_fxt(
subset='all', categories=data.target_names[-1:-3:-1], shuffle=False)
# Check that the ordering of the target_names is the same
# as the ordering in the full dataset
assert data2cats.target_names == data.target_names[-2:]
# Assert that we have only 0 and 1 as labels
assert np.unique(data2cats.target).tolist() == [0, 1]
# Check that the number of filenames is consistent with data/target
assert len(data2cats.filenames) == len(data2cats.target)
assert len(data2cats.filenames) == len(data2cats.data)
# Check that the first entry of the reduced dataset corresponds to
# the first entry of the corresponding category in the full dataset
entry1 = data2cats.data[0]
category = data2cats.target_names[data2cats.target[0]]
label = data.target_names.index(category)
entry2 = data.data[np.where(data.target == label)[0][0]]
assert entry1 == entry2
# check that return_X_y option
X, y = fetch_20newsgroups_fxt(subset='all', shuffle=False, return_X_y=True)
assert len(X) == len(data.data)
assert y.shape == data.target.shape
def test_20news_length_consistency(fetch_20newsgroups_fxt):
"""Checks the length consistencies within the bunch
This is a non-regression test for a bug present in 0.16.1.
"""
# Extract the full dataset
data = fetch_20newsgroups_fxt(subset='all')
assert len(data['data']) == len(data.data)
assert len(data['target']) == len(data.target)
assert len(data['filenames']) == len(data.filenames)
def test_20news_vectorized(fetch_20newsgroups_vectorized_fxt):
# test subset = train
bunch = fetch_20newsgroups_vectorized_fxt(subset="train")
assert sp.isspmatrix_csr(bunch.data)
assert bunch.data.shape == (11314, 130107)
assert bunch.target.shape[0] == 11314
assert bunch.data.dtype == np.float64
# test subset = test
bunch = fetch_20newsgroups_vectorized_fxt(subset="test")
assert sp.isspmatrix_csr(bunch.data)
assert bunch.data.shape == (7532, 130107)
assert bunch.target.shape[0] == 7532
assert bunch.data.dtype == np.float64
# test return_X_y option
fetch_func = partial(fetch_20newsgroups_vectorized_fxt, subset='test')
check_return_X_y(bunch, fetch_func)
# test subset = all
bunch = fetch_20newsgroups_vectorized_fxt(subset='all')
assert sp.isspmatrix_csr(bunch.data)
assert bunch.data.shape == (11314 + 7532, 130107)
assert bunch.target.shape[0] == 11314 + 7532
assert bunch.data.dtype == np.float64
def test_20news_normalization(fetch_20newsgroups_vectorized_fxt):
X = fetch_20newsgroups_vectorized_fxt(normalize=False)
X_ = fetch_20newsgroups_vectorized_fxt(normalize=True)
X_norm = X_['data'][:100]
X = X['data'][:100]
assert_allclose_dense_sparse(X_norm, normalize(X))
assert np.allclose(np.linalg.norm(X_norm.todense(), axis=1), 1)