Vehicle-Anti-Theft-Face-Rec.../venv/Lib/site-packages/skimage/transform/tests/test_geometric.py

523 lines
18 KiB
Python

import numpy as np
import re
from skimage.transform._geometric import GeometricTransform
from skimage.transform import (estimate_transform, matrix_transform,
EuclideanTransform, SimilarityTransform,
AffineTransform, FundamentalMatrixTransform,
EssentialMatrixTransform, ProjectiveTransform,
PolynomialTransform, PiecewiseAffineTransform)
from skimage._shared import testing
from skimage._shared.testing import assert_equal, assert_almost_equal
import textwrap
SRC = np.array([
[-12.3705, -10.5075],
[-10.7865, 15.4305],
[8.6985, 10.8675],
[11.4975, -9.5715],
[7.8435, 7.4835],
[-5.3325, 6.5025],
[6.7905, -6.3765],
[-6.1695, -0.8235],
])
DST = np.array([
[0, 0],
[0, 5800],
[4900, 5800],
[4900, 0],
[4479, 4580],
[1176, 3660],
[3754, 790],
[1024, 1931],
])
def test_estimate_transform():
for tform in ('euclidean', 'similarity', 'affine', 'projective',
'polynomial'):
estimate_transform(tform, SRC[:2, :], DST[:2, :])
with testing.raises(ValueError):
estimate_transform('foobar', SRC[:2, :], DST[:2, :])
def test_matrix_transform():
tform = AffineTransform(scale=(0.1, 0.5), rotation=2)
assert_equal(tform(SRC), matrix_transform(SRC, tform.params))
def test_euclidean_estimation():
# exact solution
tform = estimate_transform('euclidean', SRC[:2, :], SRC[:2, :] + 10)
assert_almost_equal(tform(SRC[:2, :]), SRC[:2, :] + 10)
assert_almost_equal(tform.params[0, 0], tform.params[1, 1])
assert_almost_equal(tform.params[0, 1], - tform.params[1, 0])
# over-determined
tform2 = estimate_transform('euclidean', SRC, DST)
assert_almost_equal(tform2.inverse(tform2(SRC)), SRC)
assert_almost_equal(tform2.params[0, 0], tform2.params[1, 1])
assert_almost_equal(tform2.params[0, 1], - tform2.params[1, 0])
# via estimate method
tform3 = EuclideanTransform()
tform3.estimate(SRC, DST)
assert_almost_equal(tform3.params, tform2.params)
def test_euclidean_init():
# init with implicit parameters
rotation = 1
translation = (1, 1)
tform = EuclideanTransform(rotation=rotation, translation=translation)
assert_almost_equal(tform.rotation, rotation)
assert_almost_equal(tform.translation, translation)
# init with transformation matrix
tform2 = EuclideanTransform(tform.params)
assert_almost_equal(tform2.rotation, rotation)
assert_almost_equal(tform2.translation, translation)
# test special case for scale if rotation=0
rotation = 0
translation = (1, 1)
tform = EuclideanTransform(rotation=rotation, translation=translation)
assert_almost_equal(tform.rotation, rotation)
assert_almost_equal(tform.translation, translation)
# test special case for scale if rotation=90deg
rotation = np.pi / 2
translation = (1, 1)
tform = EuclideanTransform(rotation=rotation, translation=translation)
assert_almost_equal(tform.rotation, rotation)
assert_almost_equal(tform.translation, translation)
def test_similarity_estimation():
# exact solution
tform = estimate_transform('similarity', SRC[:2, :], DST[:2, :])
assert_almost_equal(tform(SRC[:2, :]), DST[:2, :])
assert_almost_equal(tform.params[0, 0], tform.params[1, 1])
assert_almost_equal(tform.params[0, 1], - tform.params[1, 0])
# over-determined
tform2 = estimate_transform('similarity', SRC, DST)
assert_almost_equal(tform2.inverse(tform2(SRC)), SRC)
assert_almost_equal(tform2.params[0, 0], tform2.params[1, 1])
assert_almost_equal(tform2.params[0, 1], - tform2.params[1, 0])
# via estimate method
tform3 = SimilarityTransform()
tform3.estimate(SRC, DST)
assert_almost_equal(tform3.params, tform2.params)
def test_similarity_init():
# init with implicit parameters
scale = 0.1
rotation = 1
translation = (1, 1)
tform = SimilarityTransform(scale=scale, rotation=rotation,
translation=translation)
assert_almost_equal(tform.scale, scale)
assert_almost_equal(tform.rotation, rotation)
assert_almost_equal(tform.translation, translation)
# init with transformation matrix
tform2 = SimilarityTransform(tform.params)
assert_almost_equal(tform2.scale, scale)
assert_almost_equal(tform2.rotation, rotation)
assert_almost_equal(tform2.translation, translation)
# test special case for scale if rotation=0
scale = 0.1
rotation = 0
translation = (1, 1)
tform = SimilarityTransform(scale=scale, rotation=rotation,
translation=translation)
assert_almost_equal(tform.scale, scale)
assert_almost_equal(tform.rotation, rotation)
assert_almost_equal(tform.translation, translation)
# test special case for scale if rotation=90deg
scale = 0.1
rotation = np.pi / 2
translation = (1, 1)
tform = SimilarityTransform(scale=scale, rotation=rotation,
translation=translation)
assert_almost_equal(tform.scale, scale)
assert_almost_equal(tform.rotation, rotation)
assert_almost_equal(tform.translation, translation)
# test special case for scale where the rotation isn't exactly 90deg,
# but very close
scale = 1.0
rotation = np.pi / 2
translation = (0, 0)
params = np.array([[0, -1, 1.33226763e-15],
[1, 2.22044605e-16, -1.33226763e-15],
[0, 0, 1]])
tform = SimilarityTransform(params)
assert_almost_equal(tform.scale, scale)
assert_almost_equal(tform.rotation, rotation)
assert_almost_equal(tform.translation, translation)
def test_affine_estimation():
# exact solution
tform = estimate_transform('affine', SRC[:3, :], DST[:3, :])
assert_almost_equal(tform(SRC[:3, :]), DST[:3, :])
# over-determined
tform2 = estimate_transform('affine', SRC, DST)
assert_almost_equal(tform2.inverse(tform2(SRC)), SRC)
# via estimate method
tform3 = AffineTransform()
tform3.estimate(SRC, DST)
assert_almost_equal(tform3.params, tform2.params)
def test_affine_init():
# init with implicit parameters
scale = (0.1, 0.13)
rotation = 1
shear = 0.1
translation = (1, 1)
tform = AffineTransform(scale=scale, rotation=rotation, shear=shear,
translation=translation)
assert_almost_equal(tform.scale, scale)
assert_almost_equal(tform.rotation, rotation)
assert_almost_equal(tform.shear, shear)
assert_almost_equal(tform.translation, translation)
# init with transformation matrix
tform2 = AffineTransform(tform.params)
assert_almost_equal(tform2.scale, scale)
assert_almost_equal(tform2.rotation, rotation)
assert_almost_equal(tform2.shear, shear)
assert_almost_equal(tform2.translation, translation)
# scalar vs. tuple scale arguments
assert_almost_equal(AffineTransform(scale=0.5).scale, AffineTransform(scale=(0.5, 0.5)).scale)
def test_piecewise_affine():
tform = PiecewiseAffineTransform()
tform.estimate(SRC, DST)
# make sure each single affine transform is exactly estimated
assert_almost_equal(tform(SRC), DST)
assert_almost_equal(tform.inverse(DST), SRC)
def test_fundamental_matrix_estimation():
src = np.array([1.839035, 1.924743, 0.543582, 0.375221,
0.473240, 0.142522, 0.964910, 0.598376,
0.102388, 0.140092, 15.994343, 9.622164,
0.285901, 0.430055, 0.091150, 0.254594]).reshape(-1, 2)
dst = np.array([1.002114, 1.129644, 1.521742, 1.846002,
1.084332, 0.275134, 0.293328, 0.588992,
0.839509, 0.087290, 1.779735, 1.116857,
0.878616, 0.602447, 0.642616, 1.028681]).reshape(-1, 2)
tform = estimate_transform('fundamental', src, dst)
# Reference values obtained using COLMAP SfM library.
tform_ref = np.array([[-0.217859, 0.419282, -0.0343075],
[-0.0717941, 0.0451643, 0.0216073],
[0.248062, -0.429478, 0.0221019]])
assert_almost_equal(tform.params, tform_ref, 6)
def test_fundamental_matrix_residuals():
essential_matrix_tform = EssentialMatrixTransform(
rotation=np.eye(3), translation=np.array([1, 0, 0]))
tform = FundamentalMatrixTransform()
tform.params = essential_matrix_tform.params
src = np.array([[0, 0], [0, 0], [0, 0]])
dst = np.array([[2, 0], [2, 1], [2, 2]])
assert_almost_equal(tform.residuals(src, dst)**2, [0, 0.5, 2])
def test_fundamental_matrix_forward():
essential_matrix_tform = EssentialMatrixTransform(
rotation=np.eye(3), translation=np.array([1, 0, 0]))
tform = FundamentalMatrixTransform()
tform.params = essential_matrix_tform.params
src = np.array([[0, 0], [0, 1], [1, 1]])
assert_almost_equal(tform(src), [[0, -1, 0], [0, -1, 1], [0, -1, 1]])
def test_fundamental_matrix_inverse():
essential_matrix_tform = EssentialMatrixTransform(
rotation=np.eye(3), translation=np.array([1, 0, 0]))
tform = FundamentalMatrixTransform()
tform.params = essential_matrix_tform.params
src = np.array([[0, 0], [0, 1], [1, 1]])
assert_almost_equal(tform.inverse(src),
[[0, 1, 0], [0, 1, -1], [0, 1, -1]])
def test_essential_matrix_init():
tform = EssentialMatrixTransform(rotation=np.eye(3),
translation=np.array([0, 0, 1]))
assert_equal(tform.params,
np.array([0, -1, 0, 1, 0, 0, 0, 0, 0]).reshape(3, 3))
def test_essential_matrix_estimation():
src = np.array([1.839035, 1.924743, 0.543582, 0.375221,
0.473240, 0.142522, 0.964910, 0.598376,
0.102388, 0.140092, 15.994343, 9.622164,
0.285901, 0.430055, 0.091150, 0.254594]).reshape(-1, 2)
dst = np.array([1.002114, 1.129644, 1.521742, 1.846002,
1.084332, 0.275134, 0.293328, 0.588992,
0.839509, 0.087290, 1.779735, 1.116857,
0.878616, 0.602447, 0.642616, 1.028681]).reshape(-1, 2)
tform = estimate_transform('essential', src, dst)
# Reference values obtained using COLMAP SfM library.
tform_ref = np.array([[-0.0811666, 0.255449, -0.0478999],
[-0.192392, -0.0531675, 0.119547],
[0.177784, -0.22008, -0.015203]])
assert_almost_equal(tform.params, tform_ref, 6)
def test_essential_matrix_forward():
tform = EssentialMatrixTransform(rotation=np.eye(3),
translation=np.array([1, 0, 0]))
src = np.array([[0, 0], [0, 1], [1, 1]])
assert_almost_equal(tform(src), [[0, -1, 0], [0, -1, 1], [0, -1, 1]])
def test_essential_matrix_inverse():
tform = EssentialMatrixTransform(rotation=np.eye(3),
translation=np.array([1, 0, 0]))
src = np.array([[0, 0], [0, 1], [1, 1]])
assert_almost_equal(tform.inverse(src),
[[0, 1, 0], [0, 1, -1], [0, 1, -1]])
def test_essential_matrix_residuals():
tform = EssentialMatrixTransform(rotation=np.eye(3),
translation=np.array([1, 0, 0]))
src = np.array([[0, 0], [0, 0], [0, 0]])
dst = np.array([[2, 0], [2, 1], [2, 2]])
assert_almost_equal(tform.residuals(src, dst)**2, [0, 0.5, 2])
def test_projective_estimation():
# exact solution
tform = estimate_transform('projective', SRC[:4, :], DST[:4, :])
assert_almost_equal(tform(SRC[:4, :]), DST[:4, :])
# over-determined
tform2 = estimate_transform('projective', SRC, DST)
assert_almost_equal(tform2.inverse(tform2(SRC)), SRC)
# via estimate method
tform3 = ProjectiveTransform()
tform3.estimate(SRC, DST)
assert_almost_equal(tform3.params, tform2.params)
def test_projective_init():
tform = estimate_transform('projective', SRC, DST)
# init with transformation matrix
tform2 = ProjectiveTransform(tform.params)
assert_almost_equal(tform2.params, tform.params)
def test_polynomial_estimation():
# over-determined
tform = estimate_transform('polynomial', SRC, DST, order=10)
assert_almost_equal(tform(SRC), DST, 6)
# via estimate method
tform2 = PolynomialTransform()
tform2.estimate(SRC, DST, order=10)
assert_almost_equal(tform2.params, tform.params)
def test_polynomial_init():
tform = estimate_transform('polynomial', SRC, DST, order=10)
# init with transformation parameters
tform2 = PolynomialTransform(tform.params)
assert_almost_equal(tform2.params, tform.params)
def test_polynomial_default_order():
tform = estimate_transform('polynomial', SRC, DST)
tform2 = estimate_transform('polynomial', SRC, DST, order=2)
assert_almost_equal(tform2.params, tform.params)
def test_polynomial_inverse():
with testing.raises(Exception):
PolynomialTransform().inverse(0)
def test_union():
tform1 = SimilarityTransform(scale=0.1, rotation=0.3)
tform2 = SimilarityTransform(scale=0.1, rotation=0.9)
tform3 = SimilarityTransform(scale=0.1 ** 2, rotation=0.3 + 0.9)
tform = tform1 + tform2
assert_almost_equal(tform.params, tform3.params)
tform1 = AffineTransform(scale=(0.1, 0.1), rotation=0.3)
tform2 = SimilarityTransform(scale=0.1, rotation=0.9)
tform3 = SimilarityTransform(scale=0.1 ** 2, rotation=0.3 + 0.9)
tform = tform1 + tform2
assert_almost_equal(tform.params, tform3.params)
assert tform.__class__ == ProjectiveTransform
tform = AffineTransform(scale=(0.1, 0.1), rotation=0.3)
assert_almost_equal((tform + tform.inverse).params, np.eye(3))
tform1 = SimilarityTransform(scale=0.1, rotation=0.3)
tform2 = SimilarityTransform(scale=0.1, rotation=0.9)
tform3 = SimilarityTransform(scale=0.1 * 1/0.1, rotation=0.3 - 0.9)
tform = tform1 + tform2.inverse
assert_almost_equal(tform.params, tform3.params)
def test_union_differing_types():
tform1 = SimilarityTransform()
tform2 = PolynomialTransform()
with testing.raises(TypeError):
tform1.__add__(tform2)
def test_geometric_tform():
tform = GeometricTransform()
with testing.raises(NotImplementedError):
tform(0)
with testing.raises(NotImplementedError):
tform.inverse(0)
with testing.raises(NotImplementedError):
tform.__add__(0)
# See gh-3926 for discussion details
for i in range(20):
# Generate random Homography
H = np.random.rand(3, 3) * 100
H[2, H[2] == 0] += np.finfo(float).eps
H /= H[2, 2]
# Craft some src coords
src = np.array([
[(H[2, 1] + 1) / -H[2, 0], 1],
[1, (H[2, 0] + 1) / -H[2, 1]],
[1, 1],
])
# Prior to gh-3926, under the above circumstances,
# destination coordinates could be returned with nan/inf values.
tform = ProjectiveTransform(H) # Construct the transform
dst = tform(src) # Obtain the dst coords
# Ensure dst coords are finite numeric values
assert(np.isfinite(dst).all())
def test_invalid_input():
with testing.raises(ValueError):
ProjectiveTransform(np.zeros((2, 3)))
with testing.raises(ValueError):
AffineTransform(np.zeros((2, 3)))
with testing.raises(ValueError):
SimilarityTransform(np.zeros((2, 3)))
with testing.raises(ValueError):
EuclideanTransform(np.zeros((2, 3)))
with testing.raises(ValueError):
AffineTransform(matrix=np.zeros((2, 3)), scale=1)
with testing.raises(ValueError):
SimilarityTransform(matrix=np.zeros((2, 3)), scale=1)
with testing.raises(ValueError):
EuclideanTransform(
matrix=np.zeros((2, 3)), translation=(0, 0))
with testing.raises(ValueError):
PolynomialTransform(np.zeros((3, 3)))
with testing.raises(ValueError):
FundamentalMatrixTransform(matrix=np.zeros((3, 2)))
with testing.raises(ValueError):
EssentialMatrixTransform(matrix=np.zeros((3, 2)))
with testing.raises(ValueError):
EssentialMatrixTransform(rotation=np.zeros((3, 2)))
with testing.raises(ValueError):
EssentialMatrixTransform(
rotation=np.zeros((3, 3)))
with testing.raises(ValueError):
EssentialMatrixTransform(
rotation=np.eye(3))
with testing.raises(ValueError):
EssentialMatrixTransform(rotation=np.eye(3),
translation=np.zeros((2,)))
with testing.raises(ValueError):
EssentialMatrixTransform(rotation=np.eye(3),
translation=np.zeros((2,)))
with testing.raises(ValueError):
EssentialMatrixTransform(
rotation=np.eye(3), translation=np.zeros((3,)))
def test_degenerate():
src = dst = np.zeros((10, 2))
tform = SimilarityTransform()
tform.estimate(src, dst)
assert np.all(np.isnan(tform.params))
tform = AffineTransform()
tform.estimate(src, dst)
assert np.all(np.isnan(tform.params))
tform = ProjectiveTransform()
tform.estimate(src, dst)
assert np.all(np.isnan(tform.params))
# See gh-3926 for discussion details
tform = ProjectiveTransform()
for i in range(20):
# Some random coordinates
src = np.random.rand(4, 2) * 100
dst = np.random.rand(4, 2) * 100
# Degenerate the case by arranging points on a single line
src[:, 1] = np.random.rand()
# Prior to gh-3926, under the above circumstances,
# a transform could be returned with nan values.
assert(not tform.estimate(src, dst) or np.isfinite(tform.params).all())
def test_projective_repr():
tform = ProjectiveTransform()
want = re.escape(textwrap.dedent(
'''
<ProjectiveTransform(matrix=
[[1., 0., 0.],
[0., 1., 0.],
[0., 0., 1.]]) at
''').strip()) + ' 0x[a-f0-9]+' + re.escape('>')
# Hack the escaped regex to allow whitespace before each number for
# compatibility with different numpy versions.
want = want.replace('0\\.', ' *0\\.')
want = want.replace('1\\.', ' *1\\.')
assert re.match(want, repr(tform))
def test_projective_str():
tform = ProjectiveTransform()
want = re.escape(textwrap.dedent(
'''
<ProjectiveTransform(matrix=
[[1., 0., 0.],
[0., 1., 0.],
[0., 0., 1.]])>
''').strip())
# Hack the escaped regex to allow whitespace before each number for
# compatibility with different numpy versions.
want = want.replace('0\\.', ' *0\\.')
want = want.replace('1\\.', ' *1\\.')
print(want)
assert re.match(want, str(tform))