import numpy as np import re from skimage.transform._geometric import GeometricTransform from skimage.transform import (estimate_transform, matrix_transform, EuclideanTransform, SimilarityTransform, AffineTransform, FundamentalMatrixTransform, EssentialMatrixTransform, ProjectiveTransform, PolynomialTransform, PiecewiseAffineTransform) from skimage._shared import testing from skimage._shared.testing import assert_equal, assert_almost_equal import textwrap SRC = np.array([ [-12.3705, -10.5075], [-10.7865, 15.4305], [8.6985, 10.8675], [11.4975, -9.5715], [7.8435, 7.4835], [-5.3325, 6.5025], [6.7905, -6.3765], [-6.1695, -0.8235], ]) DST = np.array([ [0, 0], [0, 5800], [4900, 5800], [4900, 0], [4479, 4580], [1176, 3660], [3754, 790], [1024, 1931], ]) def test_estimate_transform(): for tform in ('euclidean', 'similarity', 'affine', 'projective', 'polynomial'): estimate_transform(tform, SRC[:2, :], DST[:2, :]) with testing.raises(ValueError): estimate_transform('foobar', SRC[:2, :], DST[:2, :]) def test_matrix_transform(): tform = AffineTransform(scale=(0.1, 0.5), rotation=2) assert_equal(tform(SRC), matrix_transform(SRC, tform.params)) def test_euclidean_estimation(): # exact solution tform = estimate_transform('euclidean', SRC[:2, :], SRC[:2, :] + 10) assert_almost_equal(tform(SRC[:2, :]), SRC[:2, :] + 10) assert_almost_equal(tform.params[0, 0], tform.params[1, 1]) assert_almost_equal(tform.params[0, 1], - tform.params[1, 0]) # over-determined tform2 = estimate_transform('euclidean', SRC, DST) assert_almost_equal(tform2.inverse(tform2(SRC)), SRC) assert_almost_equal(tform2.params[0, 0], tform2.params[1, 1]) assert_almost_equal(tform2.params[0, 1], - tform2.params[1, 0]) # via estimate method tform3 = EuclideanTransform() tform3.estimate(SRC, DST) assert_almost_equal(tform3.params, tform2.params) def test_euclidean_init(): # init with implicit parameters rotation = 1 translation = (1, 1) tform = EuclideanTransform(rotation=rotation, translation=translation) assert_almost_equal(tform.rotation, rotation) assert_almost_equal(tform.translation, translation) # init with transformation matrix tform2 = EuclideanTransform(tform.params) assert_almost_equal(tform2.rotation, rotation) assert_almost_equal(tform2.translation, translation) # test special case for scale if rotation=0 rotation = 0 translation = (1, 1) tform = EuclideanTransform(rotation=rotation, translation=translation) assert_almost_equal(tform.rotation, rotation) assert_almost_equal(tform.translation, translation) # test special case for scale if rotation=90deg rotation = np.pi / 2 translation = (1, 1) tform = EuclideanTransform(rotation=rotation, translation=translation) assert_almost_equal(tform.rotation, rotation) assert_almost_equal(tform.translation, translation) def test_similarity_estimation(): # exact solution tform = estimate_transform('similarity', SRC[:2, :], DST[:2, :]) assert_almost_equal(tform(SRC[:2, :]), DST[:2, :]) assert_almost_equal(tform.params[0, 0], tform.params[1, 1]) assert_almost_equal(tform.params[0, 1], - tform.params[1, 0]) # over-determined tform2 = estimate_transform('similarity', SRC, DST) assert_almost_equal(tform2.inverse(tform2(SRC)), SRC) assert_almost_equal(tform2.params[0, 0], tform2.params[1, 1]) assert_almost_equal(tform2.params[0, 1], - tform2.params[1, 0]) # via estimate method tform3 = SimilarityTransform() tform3.estimate(SRC, DST) assert_almost_equal(tform3.params, tform2.params) def test_similarity_init(): # init with implicit parameters scale = 0.1 rotation = 1 translation = (1, 1) tform = SimilarityTransform(scale=scale, rotation=rotation, translation=translation) assert_almost_equal(tform.scale, scale) assert_almost_equal(tform.rotation, rotation) assert_almost_equal(tform.translation, translation) # init with transformation matrix tform2 = SimilarityTransform(tform.params) assert_almost_equal(tform2.scale, scale) assert_almost_equal(tform2.rotation, rotation) assert_almost_equal(tform2.translation, translation) # test special case for scale if rotation=0 scale = 0.1 rotation = 0 translation = (1, 1) tform = SimilarityTransform(scale=scale, rotation=rotation, translation=translation) assert_almost_equal(tform.scale, scale) assert_almost_equal(tform.rotation, rotation) assert_almost_equal(tform.translation, translation) # test special case for scale if rotation=90deg scale = 0.1 rotation = np.pi / 2 translation = (1, 1) tform = SimilarityTransform(scale=scale, rotation=rotation, translation=translation) assert_almost_equal(tform.scale, scale) assert_almost_equal(tform.rotation, rotation) assert_almost_equal(tform.translation, translation) # test special case for scale where the rotation isn't exactly 90deg, # but very close scale = 1.0 rotation = np.pi / 2 translation = (0, 0) params = np.array([[0, -1, 1.33226763e-15], [1, 2.22044605e-16, -1.33226763e-15], [0, 0, 1]]) tform = SimilarityTransform(params) assert_almost_equal(tform.scale, scale) assert_almost_equal(tform.rotation, rotation) assert_almost_equal(tform.translation, translation) def test_affine_estimation(): # exact solution tform = estimate_transform('affine', SRC[:3, :], DST[:3, :]) assert_almost_equal(tform(SRC[:3, :]), DST[:3, :]) # over-determined tform2 = estimate_transform('affine', SRC, DST) assert_almost_equal(tform2.inverse(tform2(SRC)), SRC) # via estimate method tform3 = AffineTransform() tform3.estimate(SRC, DST) assert_almost_equal(tform3.params, tform2.params) def test_affine_init(): # init with implicit parameters scale = (0.1, 0.13) rotation = 1 shear = 0.1 translation = (1, 1) tform = AffineTransform(scale=scale, rotation=rotation, shear=shear, translation=translation) assert_almost_equal(tform.scale, scale) assert_almost_equal(tform.rotation, rotation) assert_almost_equal(tform.shear, shear) assert_almost_equal(tform.translation, translation) # init with transformation matrix tform2 = AffineTransform(tform.params) assert_almost_equal(tform2.scale, scale) assert_almost_equal(tform2.rotation, rotation) assert_almost_equal(tform2.shear, shear) assert_almost_equal(tform2.translation, translation) # scalar vs. tuple scale arguments assert_almost_equal(AffineTransform(scale=0.5).scale, AffineTransform(scale=(0.5, 0.5)).scale) def test_piecewise_affine(): tform = PiecewiseAffineTransform() tform.estimate(SRC, DST) # make sure each single affine transform is exactly estimated assert_almost_equal(tform(SRC), DST) assert_almost_equal(tform.inverse(DST), SRC) def test_fundamental_matrix_estimation(): src = np.array([1.839035, 1.924743, 0.543582, 0.375221, 0.473240, 0.142522, 0.964910, 0.598376, 0.102388, 0.140092, 15.994343, 9.622164, 0.285901, 0.430055, 0.091150, 0.254594]).reshape(-1, 2) dst = np.array([1.002114, 1.129644, 1.521742, 1.846002, 1.084332, 0.275134, 0.293328, 0.588992, 0.839509, 0.087290, 1.779735, 1.116857, 0.878616, 0.602447, 0.642616, 1.028681]).reshape(-1, 2) tform = estimate_transform('fundamental', src, dst) # Reference values obtained using COLMAP SfM library. tform_ref = np.array([[-0.217859, 0.419282, -0.0343075], [-0.0717941, 0.0451643, 0.0216073], [0.248062, -0.429478, 0.0221019]]) assert_almost_equal(tform.params, tform_ref, 6) def test_fundamental_matrix_residuals(): essential_matrix_tform = EssentialMatrixTransform( rotation=np.eye(3), translation=np.array([1, 0, 0])) tform = FundamentalMatrixTransform() tform.params = essential_matrix_tform.params src = np.array([[0, 0], [0, 0], [0, 0]]) dst = np.array([[2, 0], [2, 1], [2, 2]]) assert_almost_equal(tform.residuals(src, dst)**2, [0, 0.5, 2]) def test_fundamental_matrix_forward(): essential_matrix_tform = EssentialMatrixTransform( rotation=np.eye(3), translation=np.array([1, 0, 0])) tform = FundamentalMatrixTransform() tform.params = essential_matrix_tform.params src = np.array([[0, 0], [0, 1], [1, 1]]) assert_almost_equal(tform(src), [[0, -1, 0], [0, -1, 1], [0, -1, 1]]) def test_fundamental_matrix_inverse(): essential_matrix_tform = EssentialMatrixTransform( rotation=np.eye(3), translation=np.array([1, 0, 0])) tform = FundamentalMatrixTransform() tform.params = essential_matrix_tform.params src = np.array([[0, 0], [0, 1], [1, 1]]) assert_almost_equal(tform.inverse(src), [[0, 1, 0], [0, 1, -1], [0, 1, -1]]) def test_essential_matrix_init(): tform = EssentialMatrixTransform(rotation=np.eye(3), translation=np.array([0, 0, 1])) assert_equal(tform.params, np.array([0, -1, 0, 1, 0, 0, 0, 0, 0]).reshape(3, 3)) def test_essential_matrix_estimation(): src = np.array([1.839035, 1.924743, 0.543582, 0.375221, 0.473240, 0.142522, 0.964910, 0.598376, 0.102388, 0.140092, 15.994343, 9.622164, 0.285901, 0.430055, 0.091150, 0.254594]).reshape(-1, 2) dst = np.array([1.002114, 1.129644, 1.521742, 1.846002, 1.084332, 0.275134, 0.293328, 0.588992, 0.839509, 0.087290, 1.779735, 1.116857, 0.878616, 0.602447, 0.642616, 1.028681]).reshape(-1, 2) tform = estimate_transform('essential', src, dst) # Reference values obtained using COLMAP SfM library. tform_ref = np.array([[-0.0811666, 0.255449, -0.0478999], [-0.192392, -0.0531675, 0.119547], [0.177784, -0.22008, -0.015203]]) assert_almost_equal(tform.params, tform_ref, 6) def test_essential_matrix_forward(): tform = EssentialMatrixTransform(rotation=np.eye(3), translation=np.array([1, 0, 0])) src = np.array([[0, 0], [0, 1], [1, 1]]) assert_almost_equal(tform(src), [[0, -1, 0], [0, -1, 1], [0, -1, 1]]) def test_essential_matrix_inverse(): tform = EssentialMatrixTransform(rotation=np.eye(3), translation=np.array([1, 0, 0])) src = np.array([[0, 0], [0, 1], [1, 1]]) assert_almost_equal(tform.inverse(src), [[0, 1, 0], [0, 1, -1], [0, 1, -1]]) def test_essential_matrix_residuals(): tform = EssentialMatrixTransform(rotation=np.eye(3), translation=np.array([1, 0, 0])) src = np.array([[0, 0], [0, 0], [0, 0]]) dst = np.array([[2, 0], [2, 1], [2, 2]]) assert_almost_equal(tform.residuals(src, dst)**2, [0, 0.5, 2]) def test_projective_estimation(): # exact solution tform = estimate_transform('projective', SRC[:4, :], DST[:4, :]) assert_almost_equal(tform(SRC[:4, :]), DST[:4, :]) # over-determined tform2 = estimate_transform('projective', SRC, DST) assert_almost_equal(tform2.inverse(tform2(SRC)), SRC) # via estimate method tform3 = ProjectiveTransform() tform3.estimate(SRC, DST) assert_almost_equal(tform3.params, tform2.params) def test_projective_init(): tform = estimate_transform('projective', SRC, DST) # init with transformation matrix tform2 = ProjectiveTransform(tform.params) assert_almost_equal(tform2.params, tform.params) def test_polynomial_estimation(): # over-determined tform = estimate_transform('polynomial', SRC, DST, order=10) assert_almost_equal(tform(SRC), DST, 6) # via estimate method tform2 = PolynomialTransform() tform2.estimate(SRC, DST, order=10) assert_almost_equal(tform2.params, tform.params) def test_polynomial_init(): tform = estimate_transform('polynomial', SRC, DST, order=10) # init with transformation parameters tform2 = PolynomialTransform(tform.params) assert_almost_equal(tform2.params, tform.params) def test_polynomial_default_order(): tform = estimate_transform('polynomial', SRC, DST) tform2 = estimate_transform('polynomial', SRC, DST, order=2) assert_almost_equal(tform2.params, tform.params) def test_polynomial_inverse(): with testing.raises(Exception): PolynomialTransform().inverse(0) def test_union(): tform1 = SimilarityTransform(scale=0.1, rotation=0.3) tform2 = SimilarityTransform(scale=0.1, rotation=0.9) tform3 = SimilarityTransform(scale=0.1 ** 2, rotation=0.3 + 0.9) tform = tform1 + tform2 assert_almost_equal(tform.params, tform3.params) tform1 = AffineTransform(scale=(0.1, 0.1), rotation=0.3) tform2 = SimilarityTransform(scale=0.1, rotation=0.9) tform3 = SimilarityTransform(scale=0.1 ** 2, rotation=0.3 + 0.9) tform = tform1 + tform2 assert_almost_equal(tform.params, tform3.params) assert tform.__class__ == ProjectiveTransform tform = AffineTransform(scale=(0.1, 0.1), rotation=0.3) assert_almost_equal((tform + tform.inverse).params, np.eye(3)) tform1 = SimilarityTransform(scale=0.1, rotation=0.3) tform2 = SimilarityTransform(scale=0.1, rotation=0.9) tform3 = SimilarityTransform(scale=0.1 * 1/0.1, rotation=0.3 - 0.9) tform = tform1 + tform2.inverse assert_almost_equal(tform.params, tform3.params) def test_union_differing_types(): tform1 = SimilarityTransform() tform2 = PolynomialTransform() with testing.raises(TypeError): tform1.__add__(tform2) def test_geometric_tform(): tform = GeometricTransform() with testing.raises(NotImplementedError): tform(0) with testing.raises(NotImplementedError): tform.inverse(0) with testing.raises(NotImplementedError): tform.__add__(0) # See gh-3926 for discussion details for i in range(20): # Generate random Homography H = np.random.rand(3, 3) * 100 H[2, H[2] == 0] += np.finfo(float).eps H /= H[2, 2] # Craft some src coords src = np.array([ [(H[2, 1] + 1) / -H[2, 0], 1], [1, (H[2, 0] + 1) / -H[2, 1]], [1, 1], ]) # Prior to gh-3926, under the above circumstances, # destination coordinates could be returned with nan/inf values. tform = ProjectiveTransform(H) # Construct the transform dst = tform(src) # Obtain the dst coords # Ensure dst coords are finite numeric values assert(np.isfinite(dst).all()) def test_invalid_input(): with testing.raises(ValueError): ProjectiveTransform(np.zeros((2, 3))) with testing.raises(ValueError): AffineTransform(np.zeros((2, 3))) with testing.raises(ValueError): SimilarityTransform(np.zeros((2, 3))) with testing.raises(ValueError): EuclideanTransform(np.zeros((2, 3))) with testing.raises(ValueError): AffineTransform(matrix=np.zeros((2, 3)), scale=1) with testing.raises(ValueError): SimilarityTransform(matrix=np.zeros((2, 3)), scale=1) with testing.raises(ValueError): EuclideanTransform( matrix=np.zeros((2, 3)), translation=(0, 0)) with testing.raises(ValueError): PolynomialTransform(np.zeros((3, 3))) with testing.raises(ValueError): FundamentalMatrixTransform(matrix=np.zeros((3, 2))) with testing.raises(ValueError): EssentialMatrixTransform(matrix=np.zeros((3, 2))) with testing.raises(ValueError): EssentialMatrixTransform(rotation=np.zeros((3, 2))) with testing.raises(ValueError): EssentialMatrixTransform( rotation=np.zeros((3, 3))) with testing.raises(ValueError): EssentialMatrixTransform( rotation=np.eye(3)) with testing.raises(ValueError): EssentialMatrixTransform(rotation=np.eye(3), translation=np.zeros((2,))) with testing.raises(ValueError): EssentialMatrixTransform(rotation=np.eye(3), translation=np.zeros((2,))) with testing.raises(ValueError): EssentialMatrixTransform( rotation=np.eye(3), translation=np.zeros((3,))) def test_degenerate(): src = dst = np.zeros((10, 2)) tform = SimilarityTransform() tform.estimate(src, dst) assert np.all(np.isnan(tform.params)) tform = AffineTransform() tform.estimate(src, dst) assert np.all(np.isnan(tform.params)) tform = ProjectiveTransform() tform.estimate(src, dst) assert np.all(np.isnan(tform.params)) # See gh-3926 for discussion details tform = ProjectiveTransform() for i in range(20): # Some random coordinates src = np.random.rand(4, 2) * 100 dst = np.random.rand(4, 2) * 100 # Degenerate the case by arranging points on a single line src[:, 1] = np.random.rand() # Prior to gh-3926, under the above circumstances, # a transform could be returned with nan values. assert(not tform.estimate(src, dst) or np.isfinite(tform.params).all()) def test_projective_repr(): tform = ProjectiveTransform() want = re.escape(textwrap.dedent( ''' ') # Hack the escaped regex to allow whitespace before each number for # compatibility with different numpy versions. want = want.replace('0\\.', ' *0\\.') want = want.replace('1\\.', ' *1\\.') assert re.match(want, repr(tform)) def test_projective_str(): tform = ProjectiveTransform() want = re.escape(textwrap.dedent( ''' ''').strip()) # Hack the escaped regex to allow whitespace before each number for # compatibility with different numpy versions. want = want.replace('0\\.', ' *0\\.') want = want.replace('1\\.', ' *1\\.') print(want) assert re.match(want, str(tform))