Vehicle-Anti-Theft-Face-Rec.../venv/Lib/site-packages/skimage/measure/tests/test_marching_cubes.py

180 lines
7.2 KiB
Python

import numpy as np
from skimage.draw import ellipsoid, ellipsoid_stats
from skimage.measure import marching_cubes, mesh_surface_area
from skimage._shared import testing
from skimage._shared.testing import assert_array_equal
import pytest
def test_marching_cubes_isotropic():
ellipsoid_isotropic = ellipsoid(6, 10, 16, levelset=True)
_, surf = ellipsoid_stats(6, 10, 16)
# Classic
verts, faces = marching_cubes(ellipsoid_isotropic, 0., method='_lorensen')
surf_calc = mesh_surface_area(verts, faces)
# Test within 1% tolerance for isotropic. Will always underestimate.
assert surf > surf_calc and surf_calc > surf * 0.99
# Lewiner
verts, faces = marching_cubes(ellipsoid_isotropic, 0.)[:2]
surf_calc = mesh_surface_area(verts, faces)
# Test within 1% tolerance for isotropic. Will always underestimate.
assert surf > surf_calc and surf_calc > surf * 0.99
def test_marching_cubes_anisotropic():
# test spacing as numpy array (and not just tuple)
spacing = np.array([1., 10 / 6., 16 / 6.])
ellipsoid_anisotropic = ellipsoid(6, 10, 16, spacing=spacing,
levelset=True)
_, surf = ellipsoid_stats(6, 10, 16)
# Classic
verts, faces = marching_cubes(ellipsoid_anisotropic, 0.,
spacing=spacing, method='_lorensen')
surf_calc = mesh_surface_area(verts, faces)
# Test within 1.5% tolerance for anisotropic. Will always underestimate.
assert surf > surf_calc and surf_calc > surf * 0.985
# Lewiner
verts, faces = marching_cubes(ellipsoid_anisotropic, 0.,
spacing=spacing)[:2]
surf_calc = mesh_surface_area(verts, faces)
# Test within 1.5% tolerance for anisotropic. Will always underestimate.
assert surf > surf_calc and surf_calc > surf * 0.985
# Test marching cube with mask
with pytest.raises(ValueError):
verts, faces = marching_cubes(
ellipsoid_anisotropic, 0., spacing=spacing,
mask=np.array([]))[:2]
# Test spacing together with allow_degenerate=False
marching_cubes(ellipsoid_anisotropic, 0, spacing=spacing,
allow_degenerate=False)
def test_invalid_input():
# Classic
with testing.raises(ValueError):
marching_cubes(np.zeros((2, 2, 1)), 0, method='_lorensen')
with testing.raises(ValueError):
marching_cubes(np.zeros((2, 2, 1)), 1, method='_lorensen')
with testing.raises(ValueError):
marching_cubes(np.ones((3, 3, 3)), 1, spacing=(1, 2), method='_lorensen')
with testing.raises(ValueError):
marching_cubes(np.zeros((20, 20)), 0, method='_lorensen')
# Lewiner
with testing.raises(ValueError):
marching_cubes(np.zeros((2, 2, 1)), 0)
with testing.raises(ValueError):
marching_cubes(np.zeros((2, 2, 1)), 1)
with testing.raises(ValueError):
marching_cubes(np.ones((3, 3, 3)), 1, spacing=(1, 2))
with testing.raises(ValueError):
marching_cubes(np.zeros((20, 20)), 0)
def test_both_algs_same_result_ellipse():
# Performing this test on data that does not have ambiguities
sphere_small = ellipsoid(1, 1, 1, levelset=True)
vertices1, faces1 = marching_cubes(sphere_small, 0, method='_lorensen')[:2]
vertices2, faces2 = marching_cubes(sphere_small, 0,
allow_degenerate=False)[:2]
vertices3, faces3 = marching_cubes(sphere_small, 0,
allow_degenerate=False,
method='lorensen')[:2]
# Order is different, best we can do is test equal shape and same
# vertices present
assert _same_mesh(vertices1, faces1, vertices2, faces2)
assert _same_mesh(vertices1, faces1, vertices3, faces3)
def _same_mesh(vertices1, faces1, vertices2, faces2, tol=1e-10):
""" Compare two meshes, using a certain tolerance and invariant to
the order of the faces.
"""
# Unwind vertices
triangles1 = vertices1[np.array(faces1)]
triangles2 = vertices2[np.array(faces2)]
# Sort vertices within each triangle
triang1 = [np.concatenate(sorted(t, key=lambda x:tuple(x)))
for t in triangles1]
triang2 = [np.concatenate(sorted(t, key=lambda x:tuple(x)))
for t in triangles2]
# Sort the resulting 9-element "tuples"
triang1 = np.array(sorted([tuple(x) for x in triang1]))
triang2 = np.array(sorted([tuple(x) for x in triang2]))
return (triang1.shape == triang2.shape and
np.allclose(triang1, triang2, 0, tol))
def test_both_algs_same_result_donut():
# Performing this test on data that does not have ambiguities
n = 48
a, b = 2.5/n, -1.25
vol = np.empty((n, n, n), 'float32')
for iz in range(vol.shape[0]):
for iy in range(vol.shape[1]):
for ix in range(vol.shape[2]):
# Double-torii formula by Thomas Lewiner
z, y, x = float(iz)*a+b, float(iy)*a+b, float(ix)*a+b
vol[iz,iy,ix] = ( (
(8*x)**2 + (8*y-2)**2 + (8*z)**2 + 16 - 1.85*1.85 ) * ( (8*x)**2 +
(8*y-2)**2 + (8*z)**2 + 16 - 1.85*1.85 ) - 64 * ( (8*x)**2 + (8*y-2)**2 )
) * ( ( (8*x)**2 + ((8*y-2)+4)*((8*y-2)+4) + (8*z)**2 + 16 - 1.85*1.85 )
* ( (8*x)**2 + ((8*y-2)+4)*((8*y-2)+4) + (8*z)**2 + 16 - 1.85*1.85 ) -
64 * ( ((8*y-2)+4)*((8*y-2)+4) + (8*z)**2
) ) + 1025
vertices1, faces1 = marching_cubes(vol, 0, method='_lorensen')[:2]
vertices2, faces2 = marching_cubes(vol, 0)[:2]
vertices3, faces3 = marching_cubes(vol, 0, method='lorensen')[:2]
# Old and new alg are different
assert not _same_mesh(vertices1, faces1, vertices2, faces2)
# New classic and new Lewiner are different
assert not _same_mesh(vertices2, faces2, vertices3, faces3)
# Would have been nice if old and new classic would have been the same
# assert _same_mesh(vertices1, faces1, vertices3, faces3, 5)
def test_masked_marching_cubes():
ellipsoid_scalar = ellipsoid(6, 10, 16, levelset=True)
mask = np.ones_like(ellipsoid_scalar, dtype=bool)
mask[:10, :, :] = False
mask[:, :, 20:] = False
ver, faces, _, _ = marching_cubes(ellipsoid_scalar, 0, mask=mask)
area = mesh_surface_area(ver, faces)
np.testing.assert_allclose(area, 299.56878662109375, rtol=.01)
def test_masked_marching_cubes_empty():
ellipsoid_scalar = ellipsoid(6, 10, 16, levelset=True)
mask = np.array([])
with pytest.raises(ValueError):
_ = marching_cubes(ellipsoid_scalar, 0, mask=mask)
def test_masked_marching_cubes_old_lewiner():
ellipsoid_scalar = ellipsoid(6, 10, 16, levelset=True)
mask = np.array([])
with pytest.raises(NotImplementedError):
_ = marching_cubes(ellipsoid_scalar, 0, mask=mask, method='_lorensen')
def test_masked_marching_cubes_all_true():
ellipsoid_scalar = ellipsoid(6, 10, 16, levelset=True)
mask = np.ones_like(ellipsoid_scalar, dtype=bool)
ver_m, faces_m, _, _ = marching_cubes(ellipsoid_scalar, 0, mask=mask)
ver, faces, _, _ = marching_cubes(ellipsoid_scalar, 0, mask=mask)
np.testing.assert_allclose(ver_m, ver, rtol=.00001)
np.testing.assert_allclose(faces_m, faces, rtol=.00001)