import numpy as np from skimage.draw import ellipsoid, ellipsoid_stats from skimage.measure import marching_cubes, mesh_surface_area from skimage._shared import testing from skimage._shared.testing import assert_array_equal import pytest def test_marching_cubes_isotropic(): ellipsoid_isotropic = ellipsoid(6, 10, 16, levelset=True) _, surf = ellipsoid_stats(6, 10, 16) # Classic verts, faces = marching_cubes(ellipsoid_isotropic, 0., method='_lorensen') surf_calc = mesh_surface_area(verts, faces) # Test within 1% tolerance for isotropic. Will always underestimate. assert surf > surf_calc and surf_calc > surf * 0.99 # Lewiner verts, faces = marching_cubes(ellipsoid_isotropic, 0.)[:2] surf_calc = mesh_surface_area(verts, faces) # Test within 1% tolerance for isotropic. Will always underestimate. assert surf > surf_calc and surf_calc > surf * 0.99 def test_marching_cubes_anisotropic(): # test spacing as numpy array (and not just tuple) spacing = np.array([1., 10 / 6., 16 / 6.]) ellipsoid_anisotropic = ellipsoid(6, 10, 16, spacing=spacing, levelset=True) _, surf = ellipsoid_stats(6, 10, 16) # Classic verts, faces = marching_cubes(ellipsoid_anisotropic, 0., spacing=spacing, method='_lorensen') surf_calc = mesh_surface_area(verts, faces) # Test within 1.5% tolerance for anisotropic. Will always underestimate. assert surf > surf_calc and surf_calc > surf * 0.985 # Lewiner verts, faces = marching_cubes(ellipsoid_anisotropic, 0., spacing=spacing)[:2] surf_calc = mesh_surface_area(verts, faces) # Test within 1.5% tolerance for anisotropic. Will always underestimate. assert surf > surf_calc and surf_calc > surf * 0.985 # Test marching cube with mask with pytest.raises(ValueError): verts, faces = marching_cubes( ellipsoid_anisotropic, 0., spacing=spacing, mask=np.array([]))[:2] # Test spacing together with allow_degenerate=False marching_cubes(ellipsoid_anisotropic, 0, spacing=spacing, allow_degenerate=False) def test_invalid_input(): # Classic with testing.raises(ValueError): marching_cubes(np.zeros((2, 2, 1)), 0, method='_lorensen') with testing.raises(ValueError): marching_cubes(np.zeros((2, 2, 1)), 1, method='_lorensen') with testing.raises(ValueError): marching_cubes(np.ones((3, 3, 3)), 1, spacing=(1, 2), method='_lorensen') with testing.raises(ValueError): marching_cubes(np.zeros((20, 20)), 0, method='_lorensen') # Lewiner with testing.raises(ValueError): marching_cubes(np.zeros((2, 2, 1)), 0) with testing.raises(ValueError): marching_cubes(np.zeros((2, 2, 1)), 1) with testing.raises(ValueError): marching_cubes(np.ones((3, 3, 3)), 1, spacing=(1, 2)) with testing.raises(ValueError): marching_cubes(np.zeros((20, 20)), 0) def test_both_algs_same_result_ellipse(): # Performing this test on data that does not have ambiguities sphere_small = ellipsoid(1, 1, 1, levelset=True) vertices1, faces1 = marching_cubes(sphere_small, 0, method='_lorensen')[:2] vertices2, faces2 = marching_cubes(sphere_small, 0, allow_degenerate=False)[:2] vertices3, faces3 = marching_cubes(sphere_small, 0, allow_degenerate=False, method='lorensen')[:2] # Order is different, best we can do is test equal shape and same # vertices present assert _same_mesh(vertices1, faces1, vertices2, faces2) assert _same_mesh(vertices1, faces1, vertices3, faces3) def _same_mesh(vertices1, faces1, vertices2, faces2, tol=1e-10): """ Compare two meshes, using a certain tolerance and invariant to the order of the faces. """ # Unwind vertices triangles1 = vertices1[np.array(faces1)] triangles2 = vertices2[np.array(faces2)] # Sort vertices within each triangle triang1 = [np.concatenate(sorted(t, key=lambda x:tuple(x))) for t in triangles1] triang2 = [np.concatenate(sorted(t, key=lambda x:tuple(x))) for t in triangles2] # Sort the resulting 9-element "tuples" triang1 = np.array(sorted([tuple(x) for x in triang1])) triang2 = np.array(sorted([tuple(x) for x in triang2])) return (triang1.shape == triang2.shape and np.allclose(triang1, triang2, 0, tol)) def test_both_algs_same_result_donut(): # Performing this test on data that does not have ambiguities n = 48 a, b = 2.5/n, -1.25 vol = np.empty((n, n, n), 'float32') for iz in range(vol.shape[0]): for iy in range(vol.shape[1]): for ix in range(vol.shape[2]): # Double-torii formula by Thomas Lewiner z, y, x = float(iz)*a+b, float(iy)*a+b, float(ix)*a+b vol[iz,iy,ix] = ( ( (8*x)**2 + (8*y-2)**2 + (8*z)**2 + 16 - 1.85*1.85 ) * ( (8*x)**2 + (8*y-2)**2 + (8*z)**2 + 16 - 1.85*1.85 ) - 64 * ( (8*x)**2 + (8*y-2)**2 ) ) * ( ( (8*x)**2 + ((8*y-2)+4)*((8*y-2)+4) + (8*z)**2 + 16 - 1.85*1.85 ) * ( (8*x)**2 + ((8*y-2)+4)*((8*y-2)+4) + (8*z)**2 + 16 - 1.85*1.85 ) - 64 * ( ((8*y-2)+4)*((8*y-2)+4) + (8*z)**2 ) ) + 1025 vertices1, faces1 = marching_cubes(vol, 0, method='_lorensen')[:2] vertices2, faces2 = marching_cubes(vol, 0)[:2] vertices3, faces3 = marching_cubes(vol, 0, method='lorensen')[:2] # Old and new alg are different assert not _same_mesh(vertices1, faces1, vertices2, faces2) # New classic and new Lewiner are different assert not _same_mesh(vertices2, faces2, vertices3, faces3) # Would have been nice if old and new classic would have been the same # assert _same_mesh(vertices1, faces1, vertices3, faces3, 5) def test_masked_marching_cubes(): ellipsoid_scalar = ellipsoid(6, 10, 16, levelset=True) mask = np.ones_like(ellipsoid_scalar, dtype=bool) mask[:10, :, :] = False mask[:, :, 20:] = False ver, faces, _, _ = marching_cubes(ellipsoid_scalar, 0, mask=mask) area = mesh_surface_area(ver, faces) np.testing.assert_allclose(area, 299.56878662109375, rtol=.01) def test_masked_marching_cubes_empty(): ellipsoid_scalar = ellipsoid(6, 10, 16, levelset=True) mask = np.array([]) with pytest.raises(ValueError): _ = marching_cubes(ellipsoid_scalar, 0, mask=mask) def test_masked_marching_cubes_old_lewiner(): ellipsoid_scalar = ellipsoid(6, 10, 16, levelset=True) mask = np.array([]) with pytest.raises(NotImplementedError): _ = marching_cubes(ellipsoid_scalar, 0, mask=mask, method='_lorensen') def test_masked_marching_cubes_all_true(): ellipsoid_scalar = ellipsoid(6, 10, 16, levelset=True) mask = np.ones_like(ellipsoid_scalar, dtype=bool) ver_m, faces_m, _, _ = marching_cubes(ellipsoid_scalar, 0, mask=mask) ver, faces, _, _ = marching_cubes(ellipsoid_scalar, 0, mask=mask) np.testing.assert_allclose(ver_m, ver, rtol=.00001) np.testing.assert_allclose(faces_m, faces, rtol=.00001)