Fixed database typo and removed unnecessary class identifier.
This commit is contained in:
parent
00ad49a143
commit
45fb349a7d
5098 changed files with 952558 additions and 85 deletions
78
venv/Lib/site-packages/networkx/linalg/bethehessianmatrix.py
Normal file
78
venv/Lib/site-packages/networkx/linalg/bethehessianmatrix.py
Normal file
|
@ -0,0 +1,78 @@
|
|||
"""Bethe Hessian or deformed Laplacian matrix of graphs."""
|
||||
import networkx as nx
|
||||
from networkx.utils import not_implemented_for
|
||||
|
||||
__all__ = ["bethe_hessian_matrix"]
|
||||
|
||||
|
||||
@not_implemented_for("directed")
|
||||
@not_implemented_for("multigraph")
|
||||
def bethe_hessian_matrix(G, r=None, nodelist=None):
|
||||
r"""Returns the Bethe Hessian matrix of G.
|
||||
|
||||
The Bethe Hessian is a family of matrices parametrized by r, defined as
|
||||
H(r) = (r^2 - 1) I - r A + D where A is the adjacency matrix, D is the
|
||||
diagonal matrix of node degrees, and I is the identify matrix. It is equal
|
||||
to the graph laplacian when the regularizer r = 1.
|
||||
|
||||
The default choice of regularizer should be the ratio [2]
|
||||
|
||||
.. math::
|
||||
r_m = \left(\sum k_i \right)^{-1}\left(\sum k_i^2 \right) - 1
|
||||
|
||||
Parameters
|
||||
----------
|
||||
G : Graph
|
||||
A NetworkX graph
|
||||
|
||||
r : float
|
||||
Regularizer parameter
|
||||
|
||||
nodelist : list, optional
|
||||
The rows and columns are ordered according to the nodes in nodelist.
|
||||
If nodelist is None, then the ordering is produced by G.nodes().
|
||||
|
||||
|
||||
Returns
|
||||
-------
|
||||
H : Numpy matrix
|
||||
The Bethe Hessian matrix of G, with paramter r.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> k = [3, 2, 2, 1, 0]
|
||||
>>> G = nx.havel_hakimi_graph(k)
|
||||
>>> H = nx.modularity_matrix(G)
|
||||
|
||||
|
||||
See Also
|
||||
--------
|
||||
bethe_hessian_spectrum
|
||||
to_numpy_array
|
||||
adjacency_matrix
|
||||
laplacian_matrix
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] A. Saade, F. Krzakala and L. Zdeborová
|
||||
"Spectral clustering of graphs with the bethe hessian",
|
||||
Advances in Neural Information Processing Systems. 2014.
|
||||
.. [2] C. M. Lee, E. Levina
|
||||
"Estimating the number of communities in networks by spectral methods"
|
||||
arXiv:1507.00827, 2015.
|
||||
"""
|
||||
import scipy.sparse
|
||||
|
||||
if nodelist is None:
|
||||
nodelist = list(G)
|
||||
if r is None:
|
||||
r = (
|
||||
sum([d ** 2 for v, d in nx.degree(G)]) / sum([d for v, d in nx.degree(G)])
|
||||
- 1
|
||||
)
|
||||
A = nx.to_scipy_sparse_matrix(G, nodelist=nodelist, format="csr")
|
||||
n, m = A.shape
|
||||
diags = A.sum(axis=1)
|
||||
D = scipy.sparse.spdiags(diags.flatten(), [0], m, n, format="csr")
|
||||
I = scipy.sparse.eye(m, n, format="csr")
|
||||
return (r ** 2 - 1) * I - r * A + D
|
Loading…
Add table
Add a link
Reference in a new issue