78 lines
2.2 KiB
Python
78 lines
2.2 KiB
Python
"""Bethe Hessian or deformed Laplacian matrix of graphs."""
|
|
import networkx as nx
|
|
from networkx.utils import not_implemented_for
|
|
|
|
__all__ = ["bethe_hessian_matrix"]
|
|
|
|
|
|
@not_implemented_for("directed")
|
|
@not_implemented_for("multigraph")
|
|
def bethe_hessian_matrix(G, r=None, nodelist=None):
|
|
r"""Returns the Bethe Hessian matrix of G.
|
|
|
|
The Bethe Hessian is a family of matrices parametrized by r, defined as
|
|
H(r) = (r^2 - 1) I - r A + D where A is the adjacency matrix, D is the
|
|
diagonal matrix of node degrees, and I is the identify matrix. It is equal
|
|
to the graph laplacian when the regularizer r = 1.
|
|
|
|
The default choice of regularizer should be the ratio [2]
|
|
|
|
.. math::
|
|
r_m = \left(\sum k_i \right)^{-1}\left(\sum k_i^2 \right) - 1
|
|
|
|
Parameters
|
|
----------
|
|
G : Graph
|
|
A NetworkX graph
|
|
|
|
r : float
|
|
Regularizer parameter
|
|
|
|
nodelist : list, optional
|
|
The rows and columns are ordered according to the nodes in nodelist.
|
|
If nodelist is None, then the ordering is produced by G.nodes().
|
|
|
|
|
|
Returns
|
|
-------
|
|
H : Numpy matrix
|
|
The Bethe Hessian matrix of G, with paramter r.
|
|
|
|
Examples
|
|
--------
|
|
>>> k = [3, 2, 2, 1, 0]
|
|
>>> G = nx.havel_hakimi_graph(k)
|
|
>>> H = nx.modularity_matrix(G)
|
|
|
|
|
|
See Also
|
|
--------
|
|
bethe_hessian_spectrum
|
|
to_numpy_array
|
|
adjacency_matrix
|
|
laplacian_matrix
|
|
|
|
References
|
|
----------
|
|
.. [1] A. Saade, F. Krzakala and L. Zdeborová
|
|
"Spectral clustering of graphs with the bethe hessian",
|
|
Advances in Neural Information Processing Systems. 2014.
|
|
.. [2] C. M. Lee, E. Levina
|
|
"Estimating the number of communities in networks by spectral methods"
|
|
arXiv:1507.00827, 2015.
|
|
"""
|
|
import scipy.sparse
|
|
|
|
if nodelist is None:
|
|
nodelist = list(G)
|
|
if r is None:
|
|
r = (
|
|
sum([d ** 2 for v, d in nx.degree(G)]) / sum([d for v, d in nx.degree(G)])
|
|
- 1
|
|
)
|
|
A = nx.to_scipy_sparse_matrix(G, nodelist=nodelist, format="csr")
|
|
n, m = A.shape
|
|
diags = A.sum(axis=1)
|
|
D = scipy.sparse.spdiags(diags.flatten(), [0], m, n, format="csr")
|
|
I = scipy.sparse.eye(m, n, format="csr")
|
|
return (r ** 2 - 1) * I - r * A + D
|