107 lines
3.9 KiB
Python
107 lines
3.9 KiB
Python
|
import numpy as np
|
||
|
from ..measure import label
|
||
|
|
||
|
|
||
|
def clear_border(labels, buffer_size=0, bgval=0, in_place=False, mask=None):
|
||
|
"""Clear objects connected to the label image border.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
labels : (M[, N[, ..., P]]) array of int or bool
|
||
|
Imaging data labels.
|
||
|
buffer_size : int, optional
|
||
|
The width of the border examined. By default, only objects
|
||
|
that touch the outside of the image are removed.
|
||
|
bgval : float or int, optional
|
||
|
Cleared objects are set to this value.
|
||
|
in_place : bool, optional
|
||
|
Whether or not to manipulate the labels array in-place.
|
||
|
mask : ndarray of bool, same shape as `image`, optional.
|
||
|
Image data mask. Objects in labels image overlapping with
|
||
|
False pixels of mask will be removed. If defined, the
|
||
|
argument buffer_size will be ignored.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
out : (M[, N[, ..., P]]) array
|
||
|
Imaging data labels with cleared borders
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> from skimage.segmentation import clear_border
|
||
|
>>> labels = np.array([[0, 0, 0, 0, 0, 0, 0, 1, 0],
|
||
|
... [1, 1, 0, 0, 1, 0, 0, 1, 0],
|
||
|
... [1, 1, 0, 1, 0, 1, 0, 0, 0],
|
||
|
... [0, 0, 0, 1, 1, 1, 1, 0, 0],
|
||
|
... [0, 1, 1, 1, 1, 1, 1, 1, 0],
|
||
|
... [0, 0, 0, 0, 0, 0, 0, 0, 0]])
|
||
|
>>> clear_border(labels)
|
||
|
array([[0, 0, 0, 0, 0, 0, 0, 0, 0],
|
||
|
[0, 0, 0, 0, 1, 0, 0, 0, 0],
|
||
|
[0, 0, 0, 1, 0, 1, 0, 0, 0],
|
||
|
[0, 0, 0, 1, 1, 1, 1, 0, 0],
|
||
|
[0, 1, 1, 1, 1, 1, 1, 1, 0],
|
||
|
[0, 0, 0, 0, 0, 0, 0, 0, 0]])
|
||
|
>>> mask = np.array([[0, 0, 1, 1, 1, 1, 1, 1, 1],
|
||
|
... [0, 0, 1, 1, 1, 1, 1, 1, 1],
|
||
|
... [1, 1, 1, 1, 1, 1, 1, 1, 1],
|
||
|
... [1, 1, 1, 1, 1, 1, 1, 1, 1],
|
||
|
... [1, 1, 1, 1, 1, 1, 1, 1, 1],
|
||
|
... [1, 1, 1, 1, 1, 1, 1, 1, 1]]).astype(np.bool)
|
||
|
>>> clear_border(labels, mask=mask)
|
||
|
array([[0, 0, 0, 0, 0, 0, 0, 1, 0],
|
||
|
[0, 0, 0, 0, 1, 0, 0, 1, 0],
|
||
|
[0, 0, 0, 1, 0, 1, 0, 0, 0],
|
||
|
[0, 0, 0, 1, 1, 1, 1, 0, 0],
|
||
|
[0, 1, 1, 1, 1, 1, 1, 1, 0],
|
||
|
[0, 0, 0, 0, 0, 0, 0, 0, 0]])
|
||
|
|
||
|
"""
|
||
|
image = labels
|
||
|
|
||
|
if any((buffer_size >= s for s in image.shape)) and mask is None:
|
||
|
# ignore buffer_size if mask
|
||
|
raise ValueError("buffer size may not be greater than image size")
|
||
|
|
||
|
if mask is not None:
|
||
|
err_msg = "image and mask should have the same shape but are {} and {}"
|
||
|
assert image.shape == mask.shape, \
|
||
|
err_msg.format(image.shape, mask.shape)
|
||
|
if mask.dtype != np.bool_:
|
||
|
raise TypeError("mask should be of type bool.")
|
||
|
borders = ~mask
|
||
|
else:
|
||
|
# create borders with buffer_size
|
||
|
borders = np.zeros_like(image, dtype=np.bool_)
|
||
|
ext = buffer_size + 1
|
||
|
slstart = slice(ext)
|
||
|
slend = slice(-ext, None)
|
||
|
slices = [slice(s) for s in image.shape]
|
||
|
for d in range(image.ndim):
|
||
|
slicedim = list(slices)
|
||
|
slicedim[d] = slstart
|
||
|
borders[tuple(slicedim)] = True
|
||
|
slicedim[d] = slend
|
||
|
borders[tuple(slicedim)] = True
|
||
|
# Re-label, in case we are dealing with a binary image
|
||
|
# and to get consistent labeling
|
||
|
labels = label(image, background=0)
|
||
|
number = np.max(labels) + 1
|
||
|
|
||
|
# determine all objects that are connected to borders
|
||
|
borders_indices = np.unique(labels[borders])
|
||
|
indices = np.arange(number + 1)
|
||
|
# mask all label indices that are connected to borders
|
||
|
label_mask = np.in1d(indices, borders_indices)
|
||
|
# create mask for pixels to clear
|
||
|
mask = label_mask[labels.ravel()].reshape(labels.shape)
|
||
|
|
||
|
if not in_place:
|
||
|
image = image.copy()
|
||
|
|
||
|
# clear border pixels
|
||
|
image[mask] = bgval
|
||
|
|
||
|
return image
|