import numpy as np from ..measure import label def clear_border(labels, buffer_size=0, bgval=0, in_place=False, mask=None): """Clear objects connected to the label image border. Parameters ---------- labels : (M[, N[, ..., P]]) array of int or bool Imaging data labels. buffer_size : int, optional The width of the border examined. By default, only objects that touch the outside of the image are removed. bgval : float or int, optional Cleared objects are set to this value. in_place : bool, optional Whether or not to manipulate the labels array in-place. mask : ndarray of bool, same shape as `image`, optional. Image data mask. Objects in labels image overlapping with False pixels of mask will be removed. If defined, the argument buffer_size will be ignored. Returns ------- out : (M[, N[, ..., P]]) array Imaging data labels with cleared borders Examples -------- >>> import numpy as np >>> from skimage.segmentation import clear_border >>> labels = np.array([[0, 0, 0, 0, 0, 0, 0, 1, 0], ... [1, 1, 0, 0, 1, 0, 0, 1, 0], ... [1, 1, 0, 1, 0, 1, 0, 0, 0], ... [0, 0, 0, 1, 1, 1, 1, 0, 0], ... [0, 1, 1, 1, 1, 1, 1, 1, 0], ... [0, 0, 0, 0, 0, 0, 0, 0, 0]]) >>> clear_border(labels) array([[0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, 1, 0, 0, 0], [0, 0, 0, 1, 1, 1, 1, 0, 0], [0, 1, 1, 1, 1, 1, 1, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0]]) >>> mask = np.array([[0, 0, 1, 1, 1, 1, 1, 1, 1], ... [0, 0, 1, 1, 1, 1, 1, 1, 1], ... [1, 1, 1, 1, 1, 1, 1, 1, 1], ... [1, 1, 1, 1, 1, 1, 1, 1, 1], ... [1, 1, 1, 1, 1, 1, 1, 1, 1], ... [1, 1, 1, 1, 1, 1, 1, 1, 1]]).astype(np.bool) >>> clear_border(labels, mask=mask) array([[0, 0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0, 0, 1, 0], [0, 0, 0, 1, 0, 1, 0, 0, 0], [0, 0, 0, 1, 1, 1, 1, 0, 0], [0, 1, 1, 1, 1, 1, 1, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0]]) """ image = labels if any((buffer_size >= s for s in image.shape)) and mask is None: # ignore buffer_size if mask raise ValueError("buffer size may not be greater than image size") if mask is not None: err_msg = "image and mask should have the same shape but are {} and {}" assert image.shape == mask.shape, \ err_msg.format(image.shape, mask.shape) if mask.dtype != np.bool_: raise TypeError("mask should be of type bool.") borders = ~mask else: # create borders with buffer_size borders = np.zeros_like(image, dtype=np.bool_) ext = buffer_size + 1 slstart = slice(ext) slend = slice(-ext, None) slices = [slice(s) for s in image.shape] for d in range(image.ndim): slicedim = list(slices) slicedim[d] = slstart borders[tuple(slicedim)] = True slicedim[d] = slend borders[tuple(slicedim)] = True # Re-label, in case we are dealing with a binary image # and to get consistent labeling labels = label(image, background=0) number = np.max(labels) + 1 # determine all objects that are connected to borders borders_indices = np.unique(labels[borders]) indices = np.arange(number + 1) # mask all label indices that are connected to borders label_mask = np.in1d(indices, borders_indices) # create mask for pixels to clear mask = label_mask[labels.ravel()].reshape(labels.shape) if not in_place: image = image.copy() # clear border pixels image[mask] = bgval return image