78 lines
2.5 KiB
Python
78 lines
2.5 KiB
Python
|
"""
|
||
|
Feature agglomeration. Base classes and functions for performing feature
|
||
|
agglomeration.
|
||
|
"""
|
||
|
# Author: V. Michel, A. Gramfort
|
||
|
# License: BSD 3 clause
|
||
|
|
||
|
import numpy as np
|
||
|
|
||
|
from ..base import TransformerMixin
|
||
|
from ..utils import check_array
|
||
|
from ..utils.validation import check_is_fitted
|
||
|
from scipy.sparse import issparse
|
||
|
|
||
|
###############################################################################
|
||
|
# Mixin class for feature agglomeration.
|
||
|
|
||
|
|
||
|
class AgglomerationTransform(TransformerMixin):
|
||
|
"""
|
||
|
A class for feature agglomeration via the transform interface
|
||
|
"""
|
||
|
|
||
|
def transform(self, X):
|
||
|
"""
|
||
|
Transform a new matrix using the built clustering
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : array-like of shape (n_samples, n_features) or (n_samples,)
|
||
|
A M by N array of M observations in N dimensions or a length
|
||
|
M array of M one-dimensional observations.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
Y : array, shape = [n_samples, n_clusters] or [n_clusters]
|
||
|
The pooled values for each feature cluster.
|
||
|
"""
|
||
|
check_is_fitted(self)
|
||
|
|
||
|
X = check_array(X)
|
||
|
if len(self.labels_) != X.shape[1]:
|
||
|
raise ValueError("X has a different number of features than "
|
||
|
"during fitting.")
|
||
|
if self.pooling_func == np.mean and not issparse(X):
|
||
|
size = np.bincount(self.labels_)
|
||
|
n_samples = X.shape[0]
|
||
|
# a fast way to compute the mean of grouped features
|
||
|
nX = np.array([np.bincount(self.labels_, X[i, :]) / size
|
||
|
for i in range(n_samples)])
|
||
|
else:
|
||
|
nX = [self.pooling_func(X[:, self.labels_ == l], axis=1)
|
||
|
for l in np.unique(self.labels_)]
|
||
|
nX = np.array(nX).T
|
||
|
return nX
|
||
|
|
||
|
def inverse_transform(self, Xred):
|
||
|
"""
|
||
|
Inverse the transformation.
|
||
|
Return a vector of size nb_features with the values of Xred assigned
|
||
|
to each group of features
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
Xred : array-like of shape (n_samples, n_clusters) or (n_clusters,)
|
||
|
The values to be assigned to each cluster of samples
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
X : array, shape=[n_samples, n_features] or [n_features]
|
||
|
A vector of size n_samples with the values of Xred assigned to
|
||
|
each of the cluster of samples.
|
||
|
"""
|
||
|
check_is_fitted(self)
|
||
|
|
||
|
unil, inverse = np.unique(self.labels_, return_inverse=True)
|
||
|
return Xred[..., inverse]
|