""" Feature agglomeration. Base classes and functions for performing feature agglomeration. """ # Author: V. Michel, A. Gramfort # License: BSD 3 clause import numpy as np from ..base import TransformerMixin from ..utils import check_array from ..utils.validation import check_is_fitted from scipy.sparse import issparse ############################################################################### # Mixin class for feature agglomeration. class AgglomerationTransform(TransformerMixin): """ A class for feature agglomeration via the transform interface """ def transform(self, X): """ Transform a new matrix using the built clustering Parameters ---------- X : array-like of shape (n_samples, n_features) or (n_samples,) A M by N array of M observations in N dimensions or a length M array of M one-dimensional observations. Returns ------- Y : array, shape = [n_samples, n_clusters] or [n_clusters] The pooled values for each feature cluster. """ check_is_fitted(self) X = check_array(X) if len(self.labels_) != X.shape[1]: raise ValueError("X has a different number of features than " "during fitting.") if self.pooling_func == np.mean and not issparse(X): size = np.bincount(self.labels_) n_samples = X.shape[0] # a fast way to compute the mean of grouped features nX = np.array([np.bincount(self.labels_, X[i, :]) / size for i in range(n_samples)]) else: nX = [self.pooling_func(X[:, self.labels_ == l], axis=1) for l in np.unique(self.labels_)] nX = np.array(nX).T return nX def inverse_transform(self, Xred): """ Inverse the transformation. Return a vector of size nb_features with the values of Xred assigned to each group of features Parameters ---------- Xred : array-like of shape (n_samples, n_clusters) or (n_clusters,) The values to be assigned to each cluster of samples Returns ------- X : array, shape=[n_samples, n_features] or [n_features] A vector of size n_samples with the values of Xred assigned to each of the cluster of samples. """ check_is_fitted(self) unil, inverse = np.unique(self.labels_, return_inverse=True) return Xred[..., inverse]