Vehicle-Anti-Theft-Face-Rec.../venv/Lib/site-packages/jedi/inference/cache.py

126 lines
4.1 KiB
Python

"""
- the popular ``_memoize_default`` works like a typical memoize and returns the
default otherwise.
- ``CachedMetaClass`` uses ``_memoize_default`` to do the same with classes.
"""
from functools import wraps
from jedi import debug
_NO_DEFAULT = object()
_RECURSION_SENTINEL = object()
def _memoize_default(default=_NO_DEFAULT, inference_state_is_first_arg=False,
second_arg_is_inference_state=False):
""" This is a typical memoization decorator, BUT there is one difference:
To prevent recursion it sets defaults.
Preventing recursion is in this case the much bigger use than speed. I
don't think, that there is a big speed difference, but there are many cases
where recursion could happen (think about a = b; b = a).
"""
def func(function):
def wrapper(obj, *args, **kwargs):
# TODO These checks are kind of ugly and slow.
if inference_state_is_first_arg:
cache = obj.memoize_cache
elif second_arg_is_inference_state:
cache = args[0].memoize_cache # needed for meta classes
else:
cache = obj.inference_state.memoize_cache
try:
memo = cache[function]
except KeyError:
cache[function] = memo = {}
key = (obj, args, frozenset(kwargs.items()))
if key in memo:
return memo[key]
else:
if default is not _NO_DEFAULT:
memo[key] = default
rv = function(obj, *args, **kwargs)
memo[key] = rv
return rv
return wrapper
return func
def inference_state_function_cache(default=_NO_DEFAULT):
def decorator(func):
return _memoize_default(default=default, inference_state_is_first_arg=True)(func)
return decorator
def inference_state_method_cache(default=_NO_DEFAULT):
def decorator(func):
return _memoize_default(default=default)(func)
return decorator
def inference_state_as_method_param_cache():
def decorator(call):
return _memoize_default(second_arg_is_inference_state=True)(call)
return decorator
class CachedMetaClass(type):
"""
This is basically almost the same than the decorator above, it just caches
class initializations. Either you do it this way or with decorators, but
with decorators you lose class access (isinstance, etc).
"""
@inference_state_as_method_param_cache()
def __call__(self, *args, **kwargs):
return super(CachedMetaClass, self).__call__(*args, **kwargs)
def inference_state_method_generator_cache():
"""
This is a special memoizer. It memoizes generators and also checks for
recursion errors and returns no further iterator elemends in that case.
"""
def func(function):
@wraps(function)
def wrapper(obj, *args, **kwargs):
cache = obj.inference_state.memoize_cache
try:
memo = cache[function]
except KeyError:
cache[function] = memo = {}
key = (obj, args, frozenset(kwargs.items()))
if key in memo:
actual_generator, cached_lst = memo[key]
else:
actual_generator = function(obj, *args, **kwargs)
cached_lst = []
memo[key] = actual_generator, cached_lst
i = 0
while True:
try:
next_element = cached_lst[i]
if next_element is _RECURSION_SENTINEL:
debug.warning('Found a generator recursion for %s' % obj)
# This means we have hit a recursion.
return
except IndexError:
cached_lst.append(_RECURSION_SENTINEL)
next_element = next(actual_generator, None)
if next_element is None:
cached_lst.pop()
return
cached_lst[-1] = next_element
yield next_element
i += 1
return wrapper
return func