Vehicle-Anti-Theft-Face-Rec.../venv/Lib/site-packages/skimage/io/_plugins/matplotlib_plugin.py

208 lines
6.3 KiB
Python

from collections import namedtuple
import numpy as np
from mpl_toolkits.axes_grid1 import make_axes_locatable
import matplotlib.image
from ...util import dtype as dtypes
from ...exposure import is_low_contrast
from ..._shared.utils import warn
from math import floor, ceil
_default_colormap = 'gray'
_nonstandard_colormap = 'viridis'
_diverging_colormap = 'RdBu'
ImageProperties = namedtuple('ImageProperties',
['signed', 'out_of_range_float',
'low_data_range', 'unsupported_dtype'])
def _get_image_properties(image):
"""Determine nonstandard properties of an input image.
Parameters
----------
image : array
The input image.
Returns
-------
ip : ImageProperties named tuple
The properties of the image:
- signed: whether the image has negative values.
- out_of_range_float: if the image has floating point data
outside of [-1, 1].
- low_data_range: if the image is in the standard image
range (e.g. [0, 1] for a floating point image) but its
data range would be too small to display with standard
image ranges.
- unsupported_dtype: if the image data type is not a
standard skimage type, e.g. ``numpy.uint64``.
"""
immin, immax = np.min(image), np.max(image)
imtype = image.dtype.type
try:
lo, hi = dtypes.dtype_range[imtype]
except KeyError:
lo, hi = immin, immax
signed = immin < 0
out_of_range_float = (np.issubdtype(image.dtype, np.floating) and
(immin < lo or immax > hi))
low_data_range = (immin != immax and
is_low_contrast(image))
unsupported_dtype = image.dtype not in dtypes._supported_types
return ImageProperties(signed, out_of_range_float,
low_data_range, unsupported_dtype)
def _raise_warnings(image_properties):
"""Raise the appropriate warning for each nonstandard image type.
Parameters
----------
image_properties : ImageProperties named tuple
The properties of the considered image.
"""
ip = image_properties
if ip.unsupported_dtype:
warn("Non-standard image type; displaying image with "
"stretched contrast.", stacklevel=3)
if ip.low_data_range:
warn("Low image data range; displaying image with "
"stretched contrast.", stacklevel=3)
if ip.out_of_range_float:
warn("Float image out of standard range; displaying "
"image with stretched contrast.", stacklevel=3)
def _get_display_range(image):
"""Return the display range for a given set of image properties.
Parameters
----------
image : array
The input image.
Returns
-------
lo, hi : same type as immin, immax
The display range to be used for the input image.
cmap : string
The name of the colormap to use.
"""
ip = _get_image_properties(image)
immin, immax = np.min(image), np.max(image)
if ip.signed:
magnitude = max(abs(immin), abs(immax))
lo, hi = -magnitude, magnitude
cmap = _diverging_colormap
elif any(ip):
_raise_warnings(ip)
lo, hi = immin, immax
cmap = _nonstandard_colormap
else:
lo = 0
imtype = image.dtype.type
hi = dtypes.dtype_range[imtype][1]
cmap = _default_colormap
return lo, hi, cmap
def imshow(image, ax=None, show_cbar=None, **kwargs):
"""Show the input image and return the current axes.
By default, the image is displayed in greyscale, rather than
the matplotlib default colormap.
Images are assumed to have standard range for their type. For
example, if a floating point image has values in [0, 0.5], the
most intense color will be gray50, not white.
If the image exceeds the standard range, or if the range is too
small to display, we fall back on displaying exactly the range of
the input image, along with a colorbar to clearly indicate that
this range transformation has occurred.
For signed images, we use a diverging colormap centered at 0.
Parameters
----------
image : array, shape (M, N[, 3])
The image to display.
ax: `matplotlib.axes.Axes`, optional
The axis to use for the image, defaults to plt.gca().
show_cbar: boolean, optional.
Whether to show the colorbar (used to override default behavior).
**kwargs : Keyword arguments
These are passed directly to `matplotlib.pyplot.imshow`.
Returns
-------
ax_im : `matplotlib.pyplot.AxesImage`
The `AxesImage` object returned by `plt.imshow`.
"""
import matplotlib.pyplot as plt
lo, hi, cmap = _get_display_range(image)
kwargs.setdefault('interpolation', 'nearest')
kwargs.setdefault('cmap', cmap)
kwargs.setdefault('vmin', lo)
kwargs.setdefault('vmax', hi)
ax = ax or plt.gca()
ax_im = ax.imshow(image, **kwargs)
if (cmap != _default_colormap and show_cbar is not False) or show_cbar:
divider = make_axes_locatable(ax)
cax = divider.append_axes("right", size="5%", pad=0.05)
plt.colorbar(ax_im, cax=cax)
ax.get_figure().tight_layout()
return ax_im
def imshow_collection(ic, *args, **kwargs):
"""Display all images in the collection.
Returns
-------
fig : `matplotlib.figure.Figure`
The `Figure` object returned by `plt.subplots`.
"""
import matplotlib.pyplot as plt
if len(ic) < 1:
raise ValueError('Number of images to plot must be greater than 0')
# The target is to plot images on a grid with aspect ratio 4:3
num_images = len(ic)
# Two pairs of `nrows, ncols` are possible
k = (num_images * 12)**0.5
r1 = max(1, floor(k / 4))
r2 = ceil(k / 4)
c1 = ceil(num_images / r1)
c2 = ceil(num_images / r2)
# Select the one which is closer to 4:3
if abs(r1 / c1 - 0.75) < abs(r2 / c2 - 0.75):
nrows, ncols = r1, c1
else:
nrows, ncols = r2, c2
fig, axes = plt.subplots(nrows=nrows, ncols=ncols)
ax = np.asarray(axes).ravel()
for n, image in enumerate(ic):
ax[n].imshow(image, *args, **kwargs)
kwargs['ax'] = axes
return fig
imread = matplotlib.image.imread
def _app_show():
from matplotlib.pyplot import show
show()