188 lines
5.1 KiB
Python
188 lines
5.1 KiB
Python
# Authors: William Mill (bill@billmill.org)
|
|
# License: BSD 3 clause
|
|
|
|
import numpy as np
|
|
|
|
|
|
class DrawTree:
|
|
def __init__(self, tree, parent=None, depth=0, number=1):
|
|
self.x = -1.
|
|
self.y = depth
|
|
self.tree = tree
|
|
self.children = [DrawTree(c, self, depth + 1, i + 1)
|
|
for i, c
|
|
in enumerate(tree.children)]
|
|
self.parent = parent
|
|
self.thread = None
|
|
self.mod = 0
|
|
self.ancestor = self
|
|
self.change = self.shift = 0
|
|
self._lmost_sibling = None
|
|
# this is the number of the node in its group of siblings 1..n
|
|
self.number = number
|
|
|
|
def left(self):
|
|
return self.thread or len(self.children) and self.children[0]
|
|
|
|
def right(self):
|
|
return self.thread or len(self.children) and self.children[-1]
|
|
|
|
def lbrother(self):
|
|
n = None
|
|
if self.parent:
|
|
for node in self.parent.children:
|
|
if node == self:
|
|
return n
|
|
else:
|
|
n = node
|
|
return n
|
|
|
|
def get_lmost_sibling(self):
|
|
if not self._lmost_sibling and self.parent and self != \
|
|
self.parent.children[0]:
|
|
self._lmost_sibling = self.parent.children[0]
|
|
return self._lmost_sibling
|
|
lmost_sibling = property(get_lmost_sibling)
|
|
|
|
def __str__(self):
|
|
return "%s: x=%s mod=%s" % (self.tree, self.x, self.mod)
|
|
|
|
def __repr__(self):
|
|
return self.__str__()
|
|
|
|
def max_extents(self):
|
|
extents = [c.max_extents() for c in self. children]
|
|
extents.append((self.x, self.y))
|
|
return np.max(extents, axis=0)
|
|
|
|
|
|
def buchheim(tree):
|
|
dt = first_walk(DrawTree(tree))
|
|
min = second_walk(dt)
|
|
if min < 0:
|
|
third_walk(dt, -min)
|
|
return dt
|
|
|
|
|
|
def third_walk(tree, n):
|
|
tree.x += n
|
|
for c in tree.children:
|
|
third_walk(c, n)
|
|
|
|
|
|
def first_walk(v, distance=1.):
|
|
if len(v.children) == 0:
|
|
if v.lmost_sibling:
|
|
v.x = v.lbrother().x + distance
|
|
else:
|
|
v.x = 0.
|
|
else:
|
|
default_ancestor = v.children[0]
|
|
for w in v.children:
|
|
first_walk(w)
|
|
default_ancestor = apportion(w, default_ancestor, distance)
|
|
# print("finished v =", v.tree, "children")
|
|
execute_shifts(v)
|
|
|
|
midpoint = (v.children[0].x + v.children[-1].x) / 2
|
|
|
|
w = v.lbrother()
|
|
if w:
|
|
v.x = w.x + distance
|
|
v.mod = v.x - midpoint
|
|
else:
|
|
v.x = midpoint
|
|
return v
|
|
|
|
|
|
def apportion(v, default_ancestor, distance):
|
|
w = v.lbrother()
|
|
if w is not None:
|
|
# in buchheim notation:
|
|
# i == inner; o == outer; r == right; l == left; r = +; l = -
|
|
vir = vor = v
|
|
vil = w
|
|
vol = v.lmost_sibling
|
|
sir = sor = v.mod
|
|
sil = vil.mod
|
|
sol = vol.mod
|
|
while vil.right() and vir.left():
|
|
vil = vil.right()
|
|
vir = vir.left()
|
|
vol = vol.left()
|
|
vor = vor.right()
|
|
vor.ancestor = v
|
|
shift = (vil.x + sil) - (vir.x + sir) + distance
|
|
if shift > 0:
|
|
move_subtree(ancestor(vil, v, default_ancestor), v, shift)
|
|
sir = sir + shift
|
|
sor = sor + shift
|
|
sil += vil.mod
|
|
sir += vir.mod
|
|
sol += vol.mod
|
|
sor += vor.mod
|
|
if vil.right() and not vor.right():
|
|
vor.thread = vil.right()
|
|
vor.mod += sil - sor
|
|
else:
|
|
if vir.left() and not vol.left():
|
|
vol.thread = vir.left()
|
|
vol.mod += sir - sol
|
|
default_ancestor = v
|
|
return default_ancestor
|
|
|
|
|
|
def move_subtree(wl, wr, shift):
|
|
subtrees = wr.number - wl.number
|
|
# print(wl.tree, "is conflicted with", wr.tree, 'moving', subtrees,
|
|
# 'shift', shift)
|
|
# print wl, wr, wr.number, wl.number, shift, subtrees, shift/subtrees
|
|
wr.change -= shift / subtrees
|
|
wr.shift += shift
|
|
wl.change += shift / subtrees
|
|
wr.x += shift
|
|
wr.mod += shift
|
|
|
|
|
|
def execute_shifts(v):
|
|
shift = change = 0
|
|
for w in v.children[::-1]:
|
|
# print("shift:", w, shift, w.change)
|
|
w.x += shift
|
|
w.mod += shift
|
|
change += w.change
|
|
shift += w.shift + change
|
|
|
|
|
|
def ancestor(vil, v, default_ancestor):
|
|
# the relevant text is at the bottom of page 7 of
|
|
# "Improving Walker's Algorithm to Run in Linear Time" by Buchheim et al,
|
|
# (2002)
|
|
# http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.16.8757&rep=rep1&type=pdf
|
|
if vil.ancestor in v.parent.children:
|
|
return vil.ancestor
|
|
else:
|
|
return default_ancestor
|
|
|
|
|
|
def second_walk(v, m=0, depth=0, min=None):
|
|
v.x += m
|
|
v.y = depth
|
|
|
|
if min is None or v.x < min:
|
|
min = v.x
|
|
|
|
for w in v.children:
|
|
min = second_walk(w, m + v.mod, depth + 1, min)
|
|
|
|
return min
|
|
|
|
|
|
class Tree:
|
|
def __init__(self, label="", node_id=-1, *children):
|
|
self.label = label
|
|
self.node_id = node_id
|
|
if children:
|
|
self.children = children
|
|
else:
|
|
self.children = []
|