288 lines
9.8 KiB
Python
288 lines
9.8 KiB
Python
import numpy as np
|
|
from scipy.sparse import csr_matrix
|
|
import pytest
|
|
|
|
from sklearn.utils._testing import assert_array_equal
|
|
from sklearn.utils._testing import assert_array_almost_equal, assert_raises
|
|
|
|
from sklearn.metrics.pairwise import kernel_metrics
|
|
from sklearn.kernel_approximation import RBFSampler
|
|
from sklearn.kernel_approximation import AdditiveChi2Sampler
|
|
from sklearn.kernel_approximation import SkewedChi2Sampler
|
|
from sklearn.kernel_approximation import Nystroem
|
|
from sklearn.metrics.pairwise import polynomial_kernel, rbf_kernel, chi2_kernel
|
|
|
|
# generate data
|
|
rng = np.random.RandomState(0)
|
|
X = rng.random_sample(size=(300, 50))
|
|
Y = rng.random_sample(size=(300, 50))
|
|
X /= X.sum(axis=1)[:, np.newaxis]
|
|
Y /= Y.sum(axis=1)[:, np.newaxis]
|
|
|
|
|
|
def _linear_kernel(X, Y):
|
|
return np.dot(X, Y.T)
|
|
|
|
|
|
def test_additive_chi2_sampler():
|
|
# test that AdditiveChi2Sampler approximates kernel on random data
|
|
|
|
# compute exact kernel
|
|
# abbreviations for easier formula
|
|
X_ = X[:, np.newaxis, :]
|
|
Y_ = Y[np.newaxis, :, :]
|
|
|
|
large_kernel = 2 * X_ * Y_ / (X_ + Y_)
|
|
|
|
# reduce to n_samples_x x n_samples_y by summing over features
|
|
kernel = (large_kernel.sum(axis=2))
|
|
|
|
# approximate kernel mapping
|
|
transform = AdditiveChi2Sampler(sample_steps=3)
|
|
X_trans = transform.fit_transform(X)
|
|
Y_trans = transform.transform(Y)
|
|
|
|
kernel_approx = np.dot(X_trans, Y_trans.T)
|
|
|
|
assert_array_almost_equal(kernel, kernel_approx, 1)
|
|
|
|
X_sp_trans = transform.fit_transform(csr_matrix(X))
|
|
Y_sp_trans = transform.transform(csr_matrix(Y))
|
|
|
|
assert_array_equal(X_trans, X_sp_trans.A)
|
|
assert_array_equal(Y_trans, Y_sp_trans.A)
|
|
|
|
# test error is raised on negative input
|
|
Y_neg = Y.copy()
|
|
Y_neg[0, 0] = -1
|
|
assert_raises(ValueError, transform.transform, Y_neg)
|
|
|
|
# test error on invalid sample_steps
|
|
transform = AdditiveChi2Sampler(sample_steps=4)
|
|
assert_raises(ValueError, transform.fit, X)
|
|
|
|
# test that the sample interval is set correctly
|
|
sample_steps_available = [1, 2, 3]
|
|
for sample_steps in sample_steps_available:
|
|
|
|
# test that the sample_interval is initialized correctly
|
|
transform = AdditiveChi2Sampler(sample_steps=sample_steps)
|
|
assert transform.sample_interval is None
|
|
|
|
# test that the sample_interval is changed in the fit method
|
|
transform.fit(X)
|
|
assert transform.sample_interval_ is not None
|
|
|
|
# test that the sample_interval is set correctly
|
|
sample_interval = 0.3
|
|
transform = AdditiveChi2Sampler(sample_steps=4,
|
|
sample_interval=sample_interval)
|
|
assert transform.sample_interval == sample_interval
|
|
transform.fit(X)
|
|
assert transform.sample_interval_ == sample_interval
|
|
|
|
|
|
def test_skewed_chi2_sampler():
|
|
# test that RBFSampler approximates kernel on random data
|
|
|
|
# compute exact kernel
|
|
c = 0.03
|
|
# set on negative component but greater than c to ensure that the kernel
|
|
# approximation is valid on the group (-c; +\infty) endowed with the skewed
|
|
# multiplication.
|
|
Y[0, 0] = -c / 2.
|
|
|
|
# abbreviations for easier formula
|
|
X_c = (X + c)[:, np.newaxis, :]
|
|
Y_c = (Y + c)[np.newaxis, :, :]
|
|
|
|
# we do it in log-space in the hope that it's more stable
|
|
# this array is n_samples_x x n_samples_y big x n_features
|
|
log_kernel = ((np.log(X_c) / 2.) + (np.log(Y_c) / 2.) + np.log(2.) -
|
|
np.log(X_c + Y_c))
|
|
# reduce to n_samples_x x n_samples_y by summing over features in log-space
|
|
kernel = np.exp(log_kernel.sum(axis=2))
|
|
|
|
# approximate kernel mapping
|
|
transform = SkewedChi2Sampler(skewedness=c, n_components=1000,
|
|
random_state=42)
|
|
X_trans = transform.fit_transform(X)
|
|
Y_trans = transform.transform(Y)
|
|
|
|
kernel_approx = np.dot(X_trans, Y_trans.T)
|
|
assert_array_almost_equal(kernel, kernel_approx, 1)
|
|
assert np.isfinite(kernel).all(), \
|
|
'NaNs found in the Gram matrix'
|
|
assert np.isfinite(kernel_approx).all(), \
|
|
'NaNs found in the approximate Gram matrix'
|
|
|
|
# test error is raised on when inputs contains values smaller than -c
|
|
Y_neg = Y.copy()
|
|
Y_neg[0, 0] = -c * 2.
|
|
assert_raises(ValueError, transform.transform, Y_neg)
|
|
|
|
|
|
def test_additive_chi2_sampler_exceptions():
|
|
"""Ensures correct error message"""
|
|
transformer = AdditiveChi2Sampler()
|
|
X_neg = X.copy()
|
|
X_neg[0, 0] = -1
|
|
with pytest.raises(ValueError, match="X in AdditiveChi2Sampler.fit"):
|
|
transformer.fit(X_neg)
|
|
with pytest.raises(ValueError, match="X in AdditiveChi2Sampler.transform"):
|
|
transformer.fit(X)
|
|
transformer.transform(X_neg)
|
|
|
|
|
|
def test_rbf_sampler():
|
|
# test that RBFSampler approximates kernel on random data
|
|
# compute exact kernel
|
|
gamma = 10.
|
|
kernel = rbf_kernel(X, Y, gamma=gamma)
|
|
|
|
# approximate kernel mapping
|
|
rbf_transform = RBFSampler(gamma=gamma, n_components=1000, random_state=42)
|
|
X_trans = rbf_transform.fit_transform(X)
|
|
Y_trans = rbf_transform.transform(Y)
|
|
kernel_approx = np.dot(X_trans, Y_trans.T)
|
|
|
|
error = kernel - kernel_approx
|
|
assert np.abs(np.mean(error)) <= 0.01 # close to unbiased
|
|
np.abs(error, out=error)
|
|
assert np.max(error) <= 0.1 # nothing too far off
|
|
assert np.mean(error) <= 0.05 # mean is fairly close
|
|
|
|
|
|
def test_input_validation():
|
|
# Regression test: kernel approx. transformers should work on lists
|
|
# No assertions; the old versions would simply crash
|
|
X = [[1, 2], [3, 4], [5, 6]]
|
|
AdditiveChi2Sampler().fit(X).transform(X)
|
|
SkewedChi2Sampler().fit(X).transform(X)
|
|
RBFSampler().fit(X).transform(X)
|
|
|
|
X = csr_matrix(X)
|
|
RBFSampler().fit(X).transform(X)
|
|
|
|
|
|
def test_nystroem_approximation():
|
|
# some basic tests
|
|
rnd = np.random.RandomState(0)
|
|
X = rnd.uniform(size=(10, 4))
|
|
|
|
# With n_components = n_samples this is exact
|
|
X_transformed = Nystroem(n_components=X.shape[0]).fit_transform(X)
|
|
K = rbf_kernel(X)
|
|
assert_array_almost_equal(np.dot(X_transformed, X_transformed.T), K)
|
|
|
|
trans = Nystroem(n_components=2, random_state=rnd)
|
|
X_transformed = trans.fit(X).transform(X)
|
|
assert X_transformed.shape == (X.shape[0], 2)
|
|
|
|
# test callable kernel
|
|
trans = Nystroem(n_components=2, kernel=_linear_kernel, random_state=rnd)
|
|
X_transformed = trans.fit(X).transform(X)
|
|
assert X_transformed.shape == (X.shape[0], 2)
|
|
|
|
# test that available kernels fit and transform
|
|
kernels_available = kernel_metrics()
|
|
for kern in kernels_available:
|
|
trans = Nystroem(n_components=2, kernel=kern, random_state=rnd)
|
|
X_transformed = trans.fit(X).transform(X)
|
|
assert X_transformed.shape == (X.shape[0], 2)
|
|
|
|
|
|
def test_nystroem_default_parameters():
|
|
rnd = np.random.RandomState(42)
|
|
X = rnd.uniform(size=(10, 4))
|
|
|
|
# rbf kernel should behave as gamma=None by default
|
|
# aka gamma = 1 / n_features
|
|
nystroem = Nystroem(n_components=10)
|
|
X_transformed = nystroem.fit_transform(X)
|
|
K = rbf_kernel(X, gamma=None)
|
|
K2 = np.dot(X_transformed, X_transformed.T)
|
|
assert_array_almost_equal(K, K2)
|
|
|
|
# chi2 kernel should behave as gamma=1 by default
|
|
nystroem = Nystroem(kernel='chi2', n_components=10)
|
|
X_transformed = nystroem.fit_transform(X)
|
|
K = chi2_kernel(X, gamma=1)
|
|
K2 = np.dot(X_transformed, X_transformed.T)
|
|
assert_array_almost_equal(K, K2)
|
|
|
|
|
|
def test_nystroem_singular_kernel():
|
|
# test that nystroem works with singular kernel matrix
|
|
rng = np.random.RandomState(0)
|
|
X = rng.rand(10, 20)
|
|
X = np.vstack([X] * 2) # duplicate samples
|
|
|
|
gamma = 100
|
|
N = Nystroem(gamma=gamma, n_components=X.shape[0]).fit(X)
|
|
X_transformed = N.transform(X)
|
|
|
|
K = rbf_kernel(X, gamma=gamma)
|
|
|
|
assert_array_almost_equal(K, np.dot(X_transformed, X_transformed.T))
|
|
assert np.all(np.isfinite(Y))
|
|
|
|
|
|
def test_nystroem_poly_kernel_params():
|
|
# Non-regression: Nystroem should pass other parameters beside gamma.
|
|
rnd = np.random.RandomState(37)
|
|
X = rnd.uniform(size=(10, 4))
|
|
|
|
K = polynomial_kernel(X, degree=3.1, coef0=.1)
|
|
nystroem = Nystroem(kernel="polynomial", n_components=X.shape[0],
|
|
degree=3.1, coef0=.1)
|
|
X_transformed = nystroem.fit_transform(X)
|
|
assert_array_almost_equal(np.dot(X_transformed, X_transformed.T), K)
|
|
|
|
|
|
def test_nystroem_callable():
|
|
# Test Nystroem on a callable.
|
|
rnd = np.random.RandomState(42)
|
|
n_samples = 10
|
|
X = rnd.uniform(size=(n_samples, 4))
|
|
|
|
def logging_histogram_kernel(x, y, log):
|
|
"""Histogram kernel that writes to a log."""
|
|
log.append(1)
|
|
return np.minimum(x, y).sum()
|
|
|
|
kernel_log = []
|
|
X = list(X) # test input validation
|
|
Nystroem(kernel=logging_histogram_kernel,
|
|
n_components=(n_samples - 1),
|
|
kernel_params={'log': kernel_log}).fit(X)
|
|
assert len(kernel_log) == n_samples * (n_samples - 1) / 2
|
|
|
|
# if degree, gamma or coef0 is passed, we raise a warning
|
|
msg = "Don't pass gamma, coef0 or degree to Nystroem"
|
|
params = ({'gamma': 1}, {'coef0': 1}, {'degree': 2})
|
|
for param in params:
|
|
ny = Nystroem(kernel=_linear_kernel, **param)
|
|
with pytest.raises(ValueError, match=msg):
|
|
ny.fit(X)
|
|
|
|
|
|
def test_nystroem_precomputed_kernel():
|
|
# Non-regression: test Nystroem on precomputed kernel.
|
|
# PR - 14706
|
|
rnd = np.random.RandomState(12)
|
|
X = rnd.uniform(size=(10, 4))
|
|
|
|
K = polynomial_kernel(X, degree=2, coef0=.1)
|
|
nystroem = Nystroem(kernel='precomputed', n_components=X.shape[0])
|
|
X_transformed = nystroem.fit_transform(K)
|
|
assert_array_almost_equal(np.dot(X_transformed, X_transformed.T), K)
|
|
|
|
# if degree, gamma or coef0 is passed, we raise a ValueError
|
|
msg = "Don't pass gamma, coef0 or degree to Nystroem"
|
|
params = ({'gamma': 1}, {'coef0': 1}, {'degree': 2})
|
|
for param in params:
|
|
ny = Nystroem(kernel='precomputed', n_components=X.shape[0],
|
|
**param)
|
|
with pytest.raises(ValueError, match=msg):
|
|
ny.fit(K)
|