347 lines
14 KiB
Python
347 lines
14 KiB
Python
import pytest
|
|
|
|
import numpy as np
|
|
|
|
from scipy import sparse
|
|
from scipy.sparse import csgraph
|
|
from scipy.linalg import eigh
|
|
|
|
from sklearn.manifold import SpectralEmbedding
|
|
from sklearn.manifold._spectral_embedding import _graph_is_connected
|
|
from sklearn.manifold._spectral_embedding import _graph_connected_component
|
|
from sklearn.manifold import spectral_embedding
|
|
from sklearn.metrics.pairwise import rbf_kernel
|
|
from sklearn.metrics import normalized_mutual_info_score
|
|
from sklearn.neighbors import NearestNeighbors
|
|
from sklearn.cluster import KMeans
|
|
from sklearn.datasets import make_blobs
|
|
from sklearn.utils.extmath import _deterministic_vector_sign_flip
|
|
from sklearn.utils._testing import assert_array_almost_equal
|
|
from sklearn.utils._testing import assert_array_equal
|
|
|
|
|
|
# non centered, sparse centers to check the
|
|
centers = np.array([
|
|
[0.0, 5.0, 0.0, 0.0, 0.0],
|
|
[0.0, 0.0, 4.0, 0.0, 0.0],
|
|
[1.0, 0.0, 0.0, 5.0, 1.0],
|
|
])
|
|
n_samples = 1000
|
|
n_clusters, n_features = centers.shape
|
|
S, true_labels = make_blobs(n_samples=n_samples, centers=centers,
|
|
cluster_std=1., random_state=42)
|
|
|
|
|
|
def _assert_equal_with_sign_flipping(A, B, tol=0.0):
|
|
""" Check array A and B are equal with possible sign flipping on
|
|
each columns"""
|
|
tol_squared = tol ** 2
|
|
for A_col, B_col in zip(A.T, B.T):
|
|
assert (np.max((A_col - B_col) ** 2) <= tol_squared or
|
|
np.max((A_col + B_col) ** 2) <= tol_squared)
|
|
|
|
|
|
def test_sparse_graph_connected_component():
|
|
rng = np.random.RandomState(42)
|
|
n_samples = 300
|
|
boundaries = [0, 42, 121, 200, n_samples]
|
|
p = rng.permutation(n_samples)
|
|
connections = []
|
|
|
|
for start, stop in zip(boundaries[:-1], boundaries[1:]):
|
|
group = p[start:stop]
|
|
# Connect all elements within the group at least once via an
|
|
# arbitrary path that spans the group.
|
|
for i in range(len(group) - 1):
|
|
connections.append((group[i], group[i + 1]))
|
|
|
|
# Add some more random connections within the group
|
|
min_idx, max_idx = 0, len(group) - 1
|
|
n_random_connections = 1000
|
|
source = rng.randint(min_idx, max_idx, size=n_random_connections)
|
|
target = rng.randint(min_idx, max_idx, size=n_random_connections)
|
|
connections.extend(zip(group[source], group[target]))
|
|
|
|
# Build a symmetric affinity matrix
|
|
row_idx, column_idx = tuple(np.array(connections).T)
|
|
data = rng.uniform(.1, 42, size=len(connections))
|
|
affinity = sparse.coo_matrix((data, (row_idx, column_idx)))
|
|
affinity = 0.5 * (affinity + affinity.T)
|
|
|
|
for start, stop in zip(boundaries[:-1], boundaries[1:]):
|
|
component_1 = _graph_connected_component(affinity, p[start])
|
|
component_size = stop - start
|
|
assert component_1.sum() == component_size
|
|
|
|
# We should retrieve the same component mask by starting by both ends
|
|
# of the group
|
|
component_2 = _graph_connected_component(affinity, p[stop - 1])
|
|
assert component_2.sum() == component_size
|
|
assert_array_equal(component_1, component_2)
|
|
|
|
|
|
def test_spectral_embedding_two_components(seed=36):
|
|
# Test spectral embedding with two components
|
|
random_state = np.random.RandomState(seed)
|
|
n_sample = 100
|
|
affinity = np.zeros(shape=[n_sample * 2, n_sample * 2])
|
|
# first component
|
|
affinity[0:n_sample,
|
|
0:n_sample] = np.abs(random_state.randn(n_sample, n_sample)) + 2
|
|
# second component
|
|
affinity[n_sample::,
|
|
n_sample::] = np.abs(random_state.randn(n_sample, n_sample)) + 2
|
|
|
|
# Test of internal _graph_connected_component before connection
|
|
component = _graph_connected_component(affinity, 0)
|
|
assert component[:n_sample].all()
|
|
assert not component[n_sample:].any()
|
|
component = _graph_connected_component(affinity, -1)
|
|
assert not component[:n_sample].any()
|
|
assert component[n_sample:].all()
|
|
|
|
# connection
|
|
affinity[0, n_sample + 1] = 1
|
|
affinity[n_sample + 1, 0] = 1
|
|
affinity.flat[::2 * n_sample + 1] = 0
|
|
affinity = 0.5 * (affinity + affinity.T)
|
|
|
|
true_label = np.zeros(shape=2 * n_sample)
|
|
true_label[0:n_sample] = 1
|
|
|
|
se_precomp = SpectralEmbedding(n_components=1, affinity="precomputed",
|
|
random_state=np.random.RandomState(seed))
|
|
embedded_coordinate = se_precomp.fit_transform(affinity)
|
|
# Some numpy versions are touchy with types
|
|
embedded_coordinate = \
|
|
se_precomp.fit_transform(affinity.astype(np.float32))
|
|
# thresholding on the first components using 0.
|
|
label_ = np.array(embedded_coordinate.ravel() < 0, dtype="float")
|
|
assert normalized_mutual_info_score(
|
|
true_label, label_) == pytest.approx(1.0)
|
|
|
|
|
|
@pytest.mark.parametrize("X", [S, sparse.csr_matrix(S)],
|
|
ids=["dense", "sparse"])
|
|
def test_spectral_embedding_precomputed_affinity(X, seed=36):
|
|
# Test spectral embedding with precomputed kernel
|
|
gamma = 1.0
|
|
se_precomp = SpectralEmbedding(n_components=2, affinity="precomputed",
|
|
random_state=np.random.RandomState(seed))
|
|
se_rbf = SpectralEmbedding(n_components=2, affinity="rbf",
|
|
gamma=gamma,
|
|
random_state=np.random.RandomState(seed))
|
|
embed_precomp = se_precomp.fit_transform(rbf_kernel(X, gamma=gamma))
|
|
embed_rbf = se_rbf.fit_transform(X)
|
|
assert_array_almost_equal(
|
|
se_precomp.affinity_matrix_, se_rbf.affinity_matrix_)
|
|
_assert_equal_with_sign_flipping(embed_precomp, embed_rbf, 0.05)
|
|
|
|
|
|
def test_precomputed_nearest_neighbors_filtering():
|
|
# Test precomputed graph filtering when containing too many neighbors
|
|
n_neighbors = 2
|
|
results = []
|
|
for additional_neighbors in [0, 10]:
|
|
nn = NearestNeighbors(
|
|
n_neighbors=n_neighbors + additional_neighbors).fit(S)
|
|
graph = nn.kneighbors_graph(S, mode='connectivity')
|
|
embedding = SpectralEmbedding(random_state=0, n_components=2,
|
|
affinity='precomputed_nearest_neighbors',
|
|
n_neighbors=n_neighbors
|
|
).fit(graph).embedding_
|
|
results.append(embedding)
|
|
|
|
assert_array_equal(results[0], results[1])
|
|
|
|
|
|
@pytest.mark.parametrize("X", [S, sparse.csr_matrix(S)],
|
|
ids=["dense", "sparse"])
|
|
def test_spectral_embedding_callable_affinity(X, seed=36):
|
|
# Test spectral embedding with callable affinity
|
|
gamma = 0.9
|
|
kern = rbf_kernel(S, gamma=gamma)
|
|
se_callable = SpectralEmbedding(n_components=2,
|
|
affinity=(
|
|
lambda x: rbf_kernel(x, gamma=gamma)),
|
|
gamma=gamma,
|
|
random_state=np.random.RandomState(seed))
|
|
se_rbf = SpectralEmbedding(n_components=2, affinity="rbf",
|
|
gamma=gamma,
|
|
random_state=np.random.RandomState(seed))
|
|
embed_rbf = se_rbf.fit_transform(X)
|
|
embed_callable = se_callable.fit_transform(X)
|
|
assert_array_almost_equal(
|
|
se_callable.affinity_matrix_, se_rbf.affinity_matrix_)
|
|
assert_array_almost_equal(kern, se_rbf.affinity_matrix_)
|
|
_assert_equal_with_sign_flipping(embed_rbf, embed_callable, 0.05)
|
|
|
|
|
|
# TODO: Remove when pyamg does replaces sp.rand call with np.random.rand
|
|
# https://github.com/scikit-learn/scikit-learn/issues/15913
|
|
@pytest.mark.filterwarnings(
|
|
"ignore:scipy.rand is deprecated:DeprecationWarning:pyamg.*")
|
|
def test_spectral_embedding_amg_solver(seed=36):
|
|
# Test spectral embedding with amg solver
|
|
pytest.importorskip('pyamg')
|
|
|
|
se_amg = SpectralEmbedding(n_components=2, affinity="nearest_neighbors",
|
|
eigen_solver="amg", n_neighbors=5,
|
|
random_state=np.random.RandomState(seed))
|
|
se_arpack = SpectralEmbedding(n_components=2, affinity="nearest_neighbors",
|
|
eigen_solver="arpack", n_neighbors=5,
|
|
random_state=np.random.RandomState(seed))
|
|
embed_amg = se_amg.fit_transform(S)
|
|
embed_arpack = se_arpack.fit_transform(S)
|
|
_assert_equal_with_sign_flipping(embed_amg, embed_arpack, 1e-5)
|
|
|
|
# same with special case in which amg is not actually used
|
|
# regression test for #10715
|
|
# affinity between nodes
|
|
row = [0, 0, 1, 2, 3, 3, 4]
|
|
col = [1, 2, 2, 3, 4, 5, 5]
|
|
val = [100, 100, 100, 1, 100, 100, 100]
|
|
|
|
affinity = sparse.coo_matrix((val + val, (row + col, col + row)),
|
|
shape=(6, 6)).toarray()
|
|
se_amg.affinity = "precomputed"
|
|
se_arpack.affinity = "precomputed"
|
|
embed_amg = se_amg.fit_transform(affinity)
|
|
embed_arpack = se_arpack.fit_transform(affinity)
|
|
_assert_equal_with_sign_flipping(embed_amg, embed_arpack, 1e-5)
|
|
|
|
|
|
# TODO: Remove filterwarnings when pyamg does replaces sp.rand call with
|
|
# np.random.rand:
|
|
# https://github.com/scikit-learn/scikit-learn/issues/15913
|
|
@pytest.mark.filterwarnings(
|
|
"ignore:scipy.rand is deprecated:DeprecationWarning:pyamg.*")
|
|
def test_spectral_embedding_amg_solver_failure():
|
|
# Non-regression test for amg solver failure (issue #13393 on github)
|
|
pytest.importorskip('pyamg')
|
|
seed = 36
|
|
num_nodes = 100
|
|
X = sparse.rand(num_nodes, num_nodes, density=0.1, random_state=seed)
|
|
upper = sparse.triu(X) - sparse.diags(X.diagonal())
|
|
sym_matrix = upper + upper.T
|
|
embedding = spectral_embedding(sym_matrix,
|
|
n_components=10,
|
|
eigen_solver='amg',
|
|
random_state=0)
|
|
|
|
# Check that the learned embedding is stable w.r.t. random solver init:
|
|
for i in range(3):
|
|
new_embedding = spectral_embedding(sym_matrix,
|
|
n_components=10,
|
|
eigen_solver='amg',
|
|
random_state=i + 1)
|
|
_assert_equal_with_sign_flipping(embedding, new_embedding, tol=0.05)
|
|
|
|
|
|
@pytest.mark.filterwarnings("ignore:the behavior of nmi will "
|
|
"change in version 0.22")
|
|
def test_pipeline_spectral_clustering(seed=36):
|
|
# Test using pipeline to do spectral clustering
|
|
random_state = np.random.RandomState(seed)
|
|
se_rbf = SpectralEmbedding(n_components=n_clusters,
|
|
affinity="rbf",
|
|
random_state=random_state)
|
|
se_knn = SpectralEmbedding(n_components=n_clusters,
|
|
affinity="nearest_neighbors",
|
|
n_neighbors=5,
|
|
random_state=random_state)
|
|
for se in [se_rbf, se_knn]:
|
|
km = KMeans(n_clusters=n_clusters, random_state=random_state)
|
|
km.fit(se.fit_transform(S))
|
|
assert_array_almost_equal(
|
|
normalized_mutual_info_score(
|
|
km.labels_,
|
|
true_labels), 1.0, 2)
|
|
|
|
|
|
def test_spectral_embedding_unknown_eigensolver(seed=36):
|
|
# Test that SpectralClustering fails with an unknown eigensolver
|
|
se = SpectralEmbedding(n_components=1, affinity="precomputed",
|
|
random_state=np.random.RandomState(seed),
|
|
eigen_solver="<unknown>")
|
|
with pytest.raises(ValueError):
|
|
se.fit(S)
|
|
|
|
|
|
def test_spectral_embedding_unknown_affinity(seed=36):
|
|
# Test that SpectralClustering fails with an unknown affinity type
|
|
se = SpectralEmbedding(n_components=1, affinity="<unknown>",
|
|
random_state=np.random.RandomState(seed))
|
|
with pytest.raises(ValueError):
|
|
se.fit(S)
|
|
|
|
|
|
def test_connectivity(seed=36):
|
|
# Test that graph connectivity test works as expected
|
|
graph = np.array([[1, 0, 0, 0, 0],
|
|
[0, 1, 1, 0, 0],
|
|
[0, 1, 1, 1, 0],
|
|
[0, 0, 1, 1, 1],
|
|
[0, 0, 0, 1, 1]])
|
|
assert not _graph_is_connected(graph)
|
|
assert not _graph_is_connected(sparse.csr_matrix(graph))
|
|
assert not _graph_is_connected(sparse.csc_matrix(graph))
|
|
graph = np.array([[1, 1, 0, 0, 0],
|
|
[1, 1, 1, 0, 0],
|
|
[0, 1, 1, 1, 0],
|
|
[0, 0, 1, 1, 1],
|
|
[0, 0, 0, 1, 1]])
|
|
assert _graph_is_connected(graph)
|
|
assert _graph_is_connected(sparse.csr_matrix(graph))
|
|
assert _graph_is_connected(sparse.csc_matrix(graph))
|
|
|
|
|
|
def test_spectral_embedding_deterministic():
|
|
# Test that Spectral Embedding is deterministic
|
|
random_state = np.random.RandomState(36)
|
|
data = random_state.randn(10, 30)
|
|
sims = rbf_kernel(data)
|
|
embedding_1 = spectral_embedding(sims)
|
|
embedding_2 = spectral_embedding(sims)
|
|
assert_array_almost_equal(embedding_1, embedding_2)
|
|
|
|
|
|
def test_spectral_embedding_unnormalized():
|
|
# Test that spectral_embedding is also processing unnormalized laplacian
|
|
# correctly
|
|
random_state = np.random.RandomState(36)
|
|
data = random_state.randn(10, 30)
|
|
sims = rbf_kernel(data)
|
|
n_components = 8
|
|
embedding_1 = spectral_embedding(sims,
|
|
norm_laplacian=False,
|
|
n_components=n_components,
|
|
drop_first=False)
|
|
|
|
# Verify using manual computation with dense eigh
|
|
laplacian, dd = csgraph.laplacian(sims, normed=False,
|
|
return_diag=True)
|
|
_, diffusion_map = eigh(laplacian)
|
|
embedding_2 = diffusion_map.T[:n_components]
|
|
embedding_2 = _deterministic_vector_sign_flip(embedding_2).T
|
|
|
|
assert_array_almost_equal(embedding_1, embedding_2)
|
|
|
|
|
|
def test_spectral_embedding_first_eigen_vector():
|
|
# Test that the first eigenvector of spectral_embedding
|
|
# is constant and that the second is not (for a connected graph)
|
|
random_state = np.random.RandomState(36)
|
|
data = random_state.randn(10, 30)
|
|
sims = rbf_kernel(data)
|
|
n_components = 2
|
|
|
|
for seed in range(10):
|
|
embedding = spectral_embedding(sims,
|
|
norm_laplacian=False,
|
|
n_components=n_components,
|
|
drop_first=False,
|
|
random_state=seed)
|
|
|
|
assert np.std(embedding[:, 0]) == pytest.approx(0)
|
|
assert np.std(embedding[:, 1]) > 1e-3
|