Vehicle-Anti-Theft-Face-Rec.../venv/Lib/site-packages/sklearn/linear_model/tests/test_omp.py

232 lines
8.5 KiB
Python

# Author: Vlad Niculae
# License: BSD 3 clause
import numpy as np
from sklearn.utils._testing import assert_raises
from sklearn.utils._testing import assert_array_equal
from sklearn.utils._testing import assert_array_almost_equal
from sklearn.utils._testing import assert_warns
from sklearn.utils._testing import ignore_warnings
from sklearn.linear_model import (orthogonal_mp, orthogonal_mp_gram,
OrthogonalMatchingPursuit,
OrthogonalMatchingPursuitCV,
LinearRegression)
from sklearn.utils import check_random_state
from sklearn.datasets import make_sparse_coded_signal
n_samples, n_features, n_nonzero_coefs, n_targets = 25, 35, 5, 3
y, X, gamma = make_sparse_coded_signal(n_samples=n_targets,
n_components=n_features,
n_features=n_samples,
n_nonzero_coefs=n_nonzero_coefs,
random_state=0)
# Make X not of norm 1 for testing
X *= 10
y *= 10
G, Xy = np.dot(X.T, X), np.dot(X.T, y)
# this makes X (n_samples, n_features)
# and y (n_samples, 3)
def test_correct_shapes():
assert (orthogonal_mp(X, y[:, 0], n_nonzero_coefs=5).shape ==
(n_features,))
assert (orthogonal_mp(X, y, n_nonzero_coefs=5).shape ==
(n_features, 3))
def test_correct_shapes_gram():
assert (orthogonal_mp_gram(G, Xy[:, 0], n_nonzero_coefs=5).shape ==
(n_features,))
assert (orthogonal_mp_gram(G, Xy, n_nonzero_coefs=5).shape ==
(n_features, 3))
def test_n_nonzero_coefs():
assert np.count_nonzero(orthogonal_mp(X, y[:, 0], n_nonzero_coefs=5)) <= 5
assert np.count_nonzero(orthogonal_mp(X, y[:, 0],
n_nonzero_coefs=5,
precompute=True)) <= 5
def test_tol():
tol = 0.5
gamma = orthogonal_mp(X, y[:, 0], tol=tol)
gamma_gram = orthogonal_mp(X, y[:, 0], tol=tol, precompute=True)
assert np.sum((y[:, 0] - np.dot(X, gamma)) ** 2) <= tol
assert np.sum((y[:, 0] - np.dot(X, gamma_gram)) ** 2) <= tol
def test_with_without_gram():
assert_array_almost_equal(
orthogonal_mp(X, y, n_nonzero_coefs=5),
orthogonal_mp(X, y, n_nonzero_coefs=5, precompute=True))
def test_with_without_gram_tol():
assert_array_almost_equal(
orthogonal_mp(X, y, tol=1.),
orthogonal_mp(X, y, tol=1., precompute=True))
def test_unreachable_accuracy():
assert_array_almost_equal(
orthogonal_mp(X, y, tol=0),
orthogonal_mp(X, y, n_nonzero_coefs=n_features))
assert_array_almost_equal(
assert_warns(RuntimeWarning, orthogonal_mp, X, y, tol=0,
precompute=True),
orthogonal_mp(X, y, precompute=True,
n_nonzero_coefs=n_features))
def test_bad_input():
assert_raises(ValueError, orthogonal_mp, X, y, tol=-1)
assert_raises(ValueError, orthogonal_mp, X, y, n_nonzero_coefs=-1)
assert_raises(ValueError, orthogonal_mp, X, y,
n_nonzero_coefs=n_features + 1)
assert_raises(ValueError, orthogonal_mp_gram, G, Xy, tol=-1)
assert_raises(ValueError, orthogonal_mp_gram, G, Xy, n_nonzero_coefs=-1)
assert_raises(ValueError, orthogonal_mp_gram, G, Xy,
n_nonzero_coefs=n_features + 1)
def test_perfect_signal_recovery():
idx, = gamma[:, 0].nonzero()
gamma_rec = orthogonal_mp(X, y[:, 0], n_nonzero_coefs=5)
gamma_gram = orthogonal_mp_gram(G, Xy[:, 0], n_nonzero_coefs=5)
assert_array_equal(idx, np.flatnonzero(gamma_rec))
assert_array_equal(idx, np.flatnonzero(gamma_gram))
assert_array_almost_equal(gamma[:, 0], gamma_rec, decimal=2)
assert_array_almost_equal(gamma[:, 0], gamma_gram, decimal=2)
def test_orthogonal_mp_gram_readonly():
# Non-regression test for:
# https://github.com/scikit-learn/scikit-learn/issues/5956
idx, = gamma[:, 0].nonzero()
G_readonly = G.copy()
G_readonly.setflags(write=False)
Xy_readonly = Xy.copy()
Xy_readonly.setflags(write=False)
gamma_gram = orthogonal_mp_gram(G_readonly, Xy_readonly[:, 0],
n_nonzero_coefs=5,
copy_Gram=False, copy_Xy=False)
assert_array_equal(idx, np.flatnonzero(gamma_gram))
assert_array_almost_equal(gamma[:, 0], gamma_gram, decimal=2)
def test_estimator():
omp = OrthogonalMatchingPursuit(n_nonzero_coefs=n_nonzero_coefs)
omp.fit(X, y[:, 0])
assert omp.coef_.shape == (n_features,)
assert omp.intercept_.shape == ()
assert np.count_nonzero(omp.coef_) <= n_nonzero_coefs
omp.fit(X, y)
assert omp.coef_.shape == (n_targets, n_features)
assert omp.intercept_.shape == (n_targets,)
assert np.count_nonzero(omp.coef_) <= n_targets * n_nonzero_coefs
coef_normalized = omp.coef_[0].copy()
omp.set_params(fit_intercept=True, normalize=False)
omp.fit(X, y[:, 0])
assert_array_almost_equal(coef_normalized, omp.coef_)
omp.set_params(fit_intercept=False, normalize=False)
omp.fit(X, y[:, 0])
assert np.count_nonzero(omp.coef_) <= n_nonzero_coefs
assert omp.coef_.shape == (n_features,)
assert omp.intercept_ == 0
omp.fit(X, y)
assert omp.coef_.shape == (n_targets, n_features)
assert omp.intercept_ == 0
assert np.count_nonzero(omp.coef_) <= n_targets * n_nonzero_coefs
def test_identical_regressors():
newX = X.copy()
newX[:, 1] = newX[:, 0]
gamma = np.zeros(n_features)
gamma[0] = gamma[1] = 1.
newy = np.dot(newX, gamma)
assert_warns(RuntimeWarning, orthogonal_mp, newX, newy, 2)
def test_swapped_regressors():
gamma = np.zeros(n_features)
# X[:, 21] should be selected first, then X[:, 0] selected second,
# which will take X[:, 21]'s place in case the algorithm does
# column swapping for optimization (which is the case at the moment)
gamma[21] = 1.0
gamma[0] = 0.5
new_y = np.dot(X, gamma)
new_Xy = np.dot(X.T, new_y)
gamma_hat = orthogonal_mp(X, new_y, n_nonzero_coefs=2)
gamma_hat_gram = orthogonal_mp_gram(G, new_Xy, n_nonzero_coefs=2)
assert_array_equal(np.flatnonzero(gamma_hat), [0, 21])
assert_array_equal(np.flatnonzero(gamma_hat_gram), [0, 21])
def test_no_atoms():
y_empty = np.zeros_like(y)
Xy_empty = np.dot(X.T, y_empty)
gamma_empty = ignore_warnings(orthogonal_mp)(X, y_empty,
n_nonzero_coefs=1)
gamma_empty_gram = ignore_warnings(orthogonal_mp)(G, Xy_empty,
n_nonzero_coefs=1)
assert np.all(gamma_empty == 0)
assert np.all(gamma_empty_gram == 0)
def test_omp_path():
path = orthogonal_mp(X, y, n_nonzero_coefs=5, return_path=True)
last = orthogonal_mp(X, y, n_nonzero_coefs=5, return_path=False)
assert path.shape == (n_features, n_targets, 5)
assert_array_almost_equal(path[:, :, -1], last)
path = orthogonal_mp_gram(G, Xy, n_nonzero_coefs=5, return_path=True)
last = orthogonal_mp_gram(G, Xy, n_nonzero_coefs=5, return_path=False)
assert path.shape == (n_features, n_targets, 5)
assert_array_almost_equal(path[:, :, -1], last)
def test_omp_return_path_prop_with_gram():
path = orthogonal_mp(X, y, n_nonzero_coefs=5, return_path=True,
precompute=True)
last = orthogonal_mp(X, y, n_nonzero_coefs=5, return_path=False,
precompute=True)
assert path.shape == (n_features, n_targets, 5)
assert_array_almost_equal(path[:, :, -1], last)
def test_omp_cv():
y_ = y[:, 0]
gamma_ = gamma[:, 0]
ompcv = OrthogonalMatchingPursuitCV(normalize=True, fit_intercept=False,
max_iter=10)
ompcv.fit(X, y_)
assert ompcv.n_nonzero_coefs_ == n_nonzero_coefs
assert_array_almost_equal(ompcv.coef_, gamma_)
omp = OrthogonalMatchingPursuit(normalize=True, fit_intercept=False,
n_nonzero_coefs=ompcv.n_nonzero_coefs_)
omp.fit(X, y_)
assert_array_almost_equal(ompcv.coef_, omp.coef_)
def test_omp_reaches_least_squares():
# Use small simple data; it's a sanity check but OMP can stop early
rng = check_random_state(0)
n_samples, n_features = (10, 8)
n_targets = 3
X = rng.randn(n_samples, n_features)
Y = rng.randn(n_samples, n_targets)
omp = OrthogonalMatchingPursuit(n_nonzero_coefs=n_features)
lstsq = LinearRegression()
omp.fit(X, Y)
lstsq.fit(X, Y)
assert_array_almost_equal(omp.coef_, lstsq.coef_)