363 lines
13 KiB
Python
363 lines
13 KiB
Python
"""Kernel Principal Components Analysis"""
|
|
|
|
# Author: Mathieu Blondel <mathieu@mblondel.org>
|
|
# License: BSD 3 clause
|
|
|
|
import numpy as np
|
|
from scipy import linalg
|
|
from scipy.sparse.linalg import eigsh
|
|
|
|
from ..utils import check_random_state
|
|
from ..utils.extmath import svd_flip
|
|
from ..utils.validation import check_is_fitted, _check_psd_eigenvalues
|
|
from ..exceptions import NotFittedError
|
|
from ..base import BaseEstimator, TransformerMixin
|
|
from ..preprocessing import KernelCenterer
|
|
from ..metrics.pairwise import pairwise_kernels
|
|
from ..utils.validation import _deprecate_positional_args
|
|
|
|
|
|
class KernelPCA(TransformerMixin, BaseEstimator):
|
|
"""Kernel Principal component analysis (KPCA)
|
|
|
|
Non-linear dimensionality reduction through the use of kernels (see
|
|
:ref:`metrics`).
|
|
|
|
Read more in the :ref:`User Guide <kernel_PCA>`.
|
|
|
|
Parameters
|
|
----------
|
|
n_components : int, default=None
|
|
Number of components. If None, all non-zero components are kept.
|
|
|
|
kernel : "linear" | "poly" | "rbf" | "sigmoid" | "cosine" | "precomputed"
|
|
Kernel. Default="linear".
|
|
|
|
gamma : float, default=1/n_features
|
|
Kernel coefficient for rbf, poly and sigmoid kernels. Ignored by other
|
|
kernels.
|
|
|
|
degree : int, default=3
|
|
Degree for poly kernels. Ignored by other kernels.
|
|
|
|
coef0 : float, default=1
|
|
Independent term in poly and sigmoid kernels.
|
|
Ignored by other kernels.
|
|
|
|
kernel_params : mapping of string to any, default=None
|
|
Parameters (keyword arguments) and values for kernel passed as
|
|
callable object. Ignored by other kernels.
|
|
|
|
alpha : int, default=1.0
|
|
Hyperparameter of the ridge regression that learns the
|
|
inverse transform (when fit_inverse_transform=True).
|
|
|
|
fit_inverse_transform : bool, default=False
|
|
Learn the inverse transform for non-precomputed kernels.
|
|
(i.e. learn to find the pre-image of a point)
|
|
|
|
eigen_solver : string ['auto'|'dense'|'arpack'], default='auto'
|
|
Select eigensolver to use. If n_components is much less than
|
|
the number of training samples, arpack may be more efficient
|
|
than the dense eigensolver.
|
|
|
|
tol : float, default=0
|
|
Convergence tolerance for arpack.
|
|
If 0, optimal value will be chosen by arpack.
|
|
|
|
max_iter : int, default=None
|
|
Maximum number of iterations for arpack.
|
|
If None, optimal value will be chosen by arpack.
|
|
|
|
remove_zero_eig : boolean, default=False
|
|
If True, then all components with zero eigenvalues are removed, so
|
|
that the number of components in the output may be < n_components
|
|
(and sometimes even zero due to numerical instability).
|
|
When n_components is None, this parameter is ignored and components
|
|
with zero eigenvalues are removed regardless.
|
|
|
|
random_state : int, RandomState instance, default=None
|
|
Used when ``eigen_solver`` == 'arpack'. Pass an int for reproducible
|
|
results across multiple function calls.
|
|
See :term:`Glossary <random_state>`.
|
|
|
|
.. versionadded:: 0.18
|
|
|
|
copy_X : boolean, default=True
|
|
If True, input X is copied and stored by the model in the `X_fit_`
|
|
attribute. If no further changes will be done to X, setting
|
|
`copy_X=False` saves memory by storing a reference.
|
|
|
|
.. versionadded:: 0.18
|
|
|
|
n_jobs : int or None, optional (default=None)
|
|
The number of parallel jobs to run.
|
|
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
|
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
|
for more details.
|
|
|
|
.. versionadded:: 0.18
|
|
|
|
Attributes
|
|
----------
|
|
lambdas_ : array, (n_components,)
|
|
Eigenvalues of the centered kernel matrix in decreasing order.
|
|
If `n_components` and `remove_zero_eig` are not set,
|
|
then all values are stored.
|
|
|
|
alphas_ : array, (n_samples, n_components)
|
|
Eigenvectors of the centered kernel matrix. If `n_components` and
|
|
`remove_zero_eig` are not set, then all components are stored.
|
|
|
|
dual_coef_ : array, (n_samples, n_features)
|
|
Inverse transform matrix. Only available when
|
|
``fit_inverse_transform`` is True.
|
|
|
|
X_transformed_fit_ : array, (n_samples, n_components)
|
|
Projection of the fitted data on the kernel principal components.
|
|
Only available when ``fit_inverse_transform`` is True.
|
|
|
|
X_fit_ : (n_samples, n_features)
|
|
The data used to fit the model. If `copy_X=False`, then `X_fit_` is
|
|
a reference. This attribute is used for the calls to transform.
|
|
|
|
Examples
|
|
--------
|
|
>>> from sklearn.datasets import load_digits
|
|
>>> from sklearn.decomposition import KernelPCA
|
|
>>> X, _ = load_digits(return_X_y=True)
|
|
>>> transformer = KernelPCA(n_components=7, kernel='linear')
|
|
>>> X_transformed = transformer.fit_transform(X)
|
|
>>> X_transformed.shape
|
|
(1797, 7)
|
|
|
|
References
|
|
----------
|
|
Kernel PCA was introduced in:
|
|
Bernhard Schoelkopf, Alexander J. Smola,
|
|
and Klaus-Robert Mueller. 1999. Kernel principal
|
|
component analysis. In Advances in kernel methods,
|
|
MIT Press, Cambridge, MA, USA 327-352.
|
|
"""
|
|
@_deprecate_positional_args
|
|
def __init__(self, n_components=None, *, kernel="linear",
|
|
gamma=None, degree=3, coef0=1, kernel_params=None,
|
|
alpha=1.0, fit_inverse_transform=False, eigen_solver='auto',
|
|
tol=0, max_iter=None, remove_zero_eig=False,
|
|
random_state=None, copy_X=True, n_jobs=None):
|
|
if fit_inverse_transform and kernel == 'precomputed':
|
|
raise ValueError(
|
|
"Cannot fit_inverse_transform with a precomputed kernel.")
|
|
self.n_components = n_components
|
|
self.kernel = kernel
|
|
self.kernel_params = kernel_params
|
|
self.gamma = gamma
|
|
self.degree = degree
|
|
self.coef0 = coef0
|
|
self.alpha = alpha
|
|
self.fit_inverse_transform = fit_inverse_transform
|
|
self.eigen_solver = eigen_solver
|
|
self.remove_zero_eig = remove_zero_eig
|
|
self.tol = tol
|
|
self.max_iter = max_iter
|
|
self.random_state = random_state
|
|
self.n_jobs = n_jobs
|
|
self.copy_X = copy_X
|
|
|
|
@property
|
|
def _pairwise(self):
|
|
return self.kernel == "precomputed"
|
|
|
|
def _get_kernel(self, X, Y=None):
|
|
if callable(self.kernel):
|
|
params = self.kernel_params or {}
|
|
else:
|
|
params = {"gamma": self.gamma,
|
|
"degree": self.degree,
|
|
"coef0": self.coef0}
|
|
return pairwise_kernels(X, Y, metric=self.kernel,
|
|
filter_params=True, n_jobs=self.n_jobs,
|
|
**params)
|
|
|
|
def _fit_transform(self, K):
|
|
""" Fit's using kernel K"""
|
|
# center kernel
|
|
K = self._centerer.fit_transform(K)
|
|
|
|
if self.n_components is None:
|
|
n_components = K.shape[0]
|
|
else:
|
|
n_components = min(K.shape[0], self.n_components)
|
|
|
|
# compute eigenvectors
|
|
if self.eigen_solver == 'auto':
|
|
if K.shape[0] > 200 and n_components < 10:
|
|
eigen_solver = 'arpack'
|
|
else:
|
|
eigen_solver = 'dense'
|
|
else:
|
|
eigen_solver = self.eigen_solver
|
|
|
|
if eigen_solver == 'dense':
|
|
self.lambdas_, self.alphas_ = linalg.eigh(
|
|
K, eigvals=(K.shape[0] - n_components, K.shape[0] - 1))
|
|
elif eigen_solver == 'arpack':
|
|
random_state = check_random_state(self.random_state)
|
|
# initialize with [-1,1] as in ARPACK
|
|
v0 = random_state.uniform(-1, 1, K.shape[0])
|
|
self.lambdas_, self.alphas_ = eigsh(K, n_components,
|
|
which="LA",
|
|
tol=self.tol,
|
|
maxiter=self.max_iter,
|
|
v0=v0)
|
|
|
|
# make sure that the eigenvalues are ok and fix numerical issues
|
|
self.lambdas_ = _check_psd_eigenvalues(self.lambdas_,
|
|
enable_warnings=False)
|
|
|
|
# flip eigenvectors' sign to enforce deterministic output
|
|
self.alphas_, _ = svd_flip(self.alphas_,
|
|
np.zeros_like(self.alphas_).T)
|
|
|
|
# sort eigenvectors in descending order
|
|
indices = self.lambdas_.argsort()[::-1]
|
|
self.lambdas_ = self.lambdas_[indices]
|
|
self.alphas_ = self.alphas_[:, indices]
|
|
|
|
# remove eigenvectors with a zero eigenvalue (null space) if required
|
|
if self.remove_zero_eig or self.n_components is None:
|
|
self.alphas_ = self.alphas_[:, self.lambdas_ > 0]
|
|
self.lambdas_ = self.lambdas_[self.lambdas_ > 0]
|
|
|
|
# Maintenance note on Eigenvectors normalization
|
|
# ----------------------------------------------
|
|
# there is a link between
|
|
# the eigenvectors of K=Phi(X)'Phi(X) and the ones of Phi(X)Phi(X)'
|
|
# if v is an eigenvector of K
|
|
# then Phi(X)v is an eigenvector of Phi(X)Phi(X)'
|
|
# if u is an eigenvector of Phi(X)Phi(X)'
|
|
# then Phi(X)'u is an eigenvector of Phi(X)'Phi(X)
|
|
#
|
|
# At this stage our self.alphas_ (the v) have norm 1, we need to scale
|
|
# them so that eigenvectors in kernel feature space (the u) have norm=1
|
|
# instead
|
|
#
|
|
# We COULD scale them here:
|
|
# self.alphas_ = self.alphas_ / np.sqrt(self.lambdas_)
|
|
#
|
|
# But choose to perform that LATER when needed, in `fit()` and in
|
|
# `transform()`.
|
|
|
|
return K
|
|
|
|
def _fit_inverse_transform(self, X_transformed, X):
|
|
if hasattr(X, "tocsr"):
|
|
raise NotImplementedError("Inverse transform not implemented for "
|
|
"sparse matrices!")
|
|
|
|
n_samples = X_transformed.shape[0]
|
|
K = self._get_kernel(X_transformed)
|
|
K.flat[::n_samples + 1] += self.alpha
|
|
self.dual_coef_ = linalg.solve(K, X, sym_pos=True, overwrite_a=True)
|
|
self.X_transformed_fit_ = X_transformed
|
|
|
|
def fit(self, X, y=None):
|
|
"""Fit the model from data in X.
|
|
|
|
Parameters
|
|
----------
|
|
X : array-like, shape (n_samples, n_features)
|
|
Training vector, where n_samples in the number of samples
|
|
and n_features is the number of features.
|
|
|
|
Returns
|
|
-------
|
|
self : object
|
|
Returns the instance itself.
|
|
"""
|
|
X = self._validate_data(X, accept_sparse='csr', copy=self.copy_X)
|
|
self._centerer = KernelCenterer()
|
|
K = self._get_kernel(X)
|
|
self._fit_transform(K)
|
|
|
|
if self.fit_inverse_transform:
|
|
# no need to use the kernel to transform X, use shortcut expression
|
|
X_transformed = self.alphas_ * np.sqrt(self.lambdas_)
|
|
|
|
self._fit_inverse_transform(X_transformed, X)
|
|
|
|
self.X_fit_ = X
|
|
return self
|
|
|
|
def fit_transform(self, X, y=None, **params):
|
|
"""Fit the model from data in X and transform X.
|
|
|
|
Parameters
|
|
----------
|
|
X : array-like, shape (n_samples, n_features)
|
|
Training vector, where n_samples in the number of samples
|
|
and n_features is the number of features.
|
|
|
|
Returns
|
|
-------
|
|
X_new : array-like, shape (n_samples, n_components)
|
|
"""
|
|
self.fit(X, **params)
|
|
|
|
# no need to use the kernel to transform X, use shortcut expression
|
|
X_transformed = self.alphas_ * np.sqrt(self.lambdas_)
|
|
|
|
if self.fit_inverse_transform:
|
|
self._fit_inverse_transform(X_transformed, X)
|
|
|
|
return X_transformed
|
|
|
|
def transform(self, X):
|
|
"""Transform X.
|
|
|
|
Parameters
|
|
----------
|
|
X : array-like, shape (n_samples, n_features)
|
|
|
|
Returns
|
|
-------
|
|
X_new : array-like, shape (n_samples, n_components)
|
|
"""
|
|
check_is_fitted(self)
|
|
|
|
# Compute centered gram matrix between X and training data X_fit_
|
|
K = self._centerer.transform(self._get_kernel(X, self.X_fit_))
|
|
|
|
# scale eigenvectors (properly account for null-space for dot product)
|
|
non_zeros = np.flatnonzero(self.lambdas_)
|
|
scaled_alphas = np.zeros_like(self.alphas_)
|
|
scaled_alphas[:, non_zeros] = (self.alphas_[:, non_zeros]
|
|
/ np.sqrt(self.lambdas_[non_zeros]))
|
|
|
|
# Project with a scalar product between K and the scaled eigenvectors
|
|
return np.dot(K, scaled_alphas)
|
|
|
|
def inverse_transform(self, X):
|
|
"""Transform X back to original space.
|
|
|
|
Parameters
|
|
----------
|
|
X : array-like, shape (n_samples, n_components)
|
|
|
|
Returns
|
|
-------
|
|
X_new : array-like, shape (n_samples, n_features)
|
|
|
|
References
|
|
----------
|
|
"Learning to Find Pre-Images", G BakIr et al, 2004.
|
|
"""
|
|
if not self.fit_inverse_transform:
|
|
raise NotFittedError("The fit_inverse_transform parameter was not"
|
|
" set to True when instantiating and hence "
|
|
"the inverse transform is not available.")
|
|
|
|
K = self._get_kernel(X, self.X_transformed_fit_)
|
|
n_samples = self.X_transformed_fit_.shape[0]
|
|
K.flat[::n_samples + 1] += self.alpha
|
|
return np.dot(K, self.dual_coef_)
|