Vehicle-Anti-Theft-Face-Rec.../venv/Lib/site-packages/sklearn/cross_decomposition/_cca.py

112 lines
3.2 KiB
Python

from ._pls import _PLS
from ..base import _UnstableArchMixin
from ..utils.validation import _deprecate_positional_args
__all__ = ['CCA']
class CCA(_UnstableArchMixin, _PLS):
"""CCA Canonical Correlation Analysis.
CCA inherits from PLS with mode="B" and deflation_mode="canonical".
Read more in the :ref:`User Guide <cross_decomposition>`.
Parameters
----------
n_components : int, (default 2).
number of components to keep.
scale : boolean, (default True)
whether to scale the data?
max_iter : an integer, (default 500)
the maximum number of iterations of the NIPALS inner loop
tol : non-negative real, default 1e-06.
the tolerance used in the iterative algorithm
copy : boolean
Whether the deflation be done on a copy. Let the default value
to True unless you don't care about side effects
Attributes
----------
x_weights_ : array, [p, n_components]
X block weights vectors.
y_weights_ : array, [q, n_components]
Y block weights vectors.
x_loadings_ : array, [p, n_components]
X block loadings vectors.
y_loadings_ : array, [q, n_components]
Y block loadings vectors.
x_scores_ : array, [n_samples, n_components]
X scores.
y_scores_ : array, [n_samples, n_components]
Y scores.
x_rotations_ : array, [p, n_components]
X block to latents rotations.
y_rotations_ : array, [q, n_components]
Y block to latents rotations.
coef_ : array of shape (p, q)
The coefficients of the linear model: ``Y = X coef_ + Err``
n_iter_ : array-like
Number of iterations of the NIPALS inner loop for each
component.
Notes
-----
For each component k, find the weights u, v that maximizes
max corr(Xk u, Yk v), such that ``|u| = |v| = 1``
Note that it maximizes only the correlations between the scores.
The residual matrix of X (Xk+1) block is obtained by the deflation on the
current X score: x_score.
The residual matrix of Y (Yk+1) block is obtained by deflation on the
current Y score.
Examples
--------
>>> from sklearn.cross_decomposition import CCA
>>> X = [[0., 0., 1.], [1.,0.,0.], [2.,2.,2.], [3.,5.,4.]]
>>> Y = [[0.1, -0.2], [0.9, 1.1], [6.2, 5.9], [11.9, 12.3]]
>>> cca = CCA(n_components=1)
>>> cca.fit(X, Y)
CCA(n_components=1)
>>> X_c, Y_c = cca.transform(X, Y)
References
----------
Jacob A. Wegelin. A survey of Partial Least Squares (PLS) methods, with
emphasis on the two-block case. Technical Report 371, Department of
Statistics, University of Washington, Seattle, 2000.
In french but still a reference:
Tenenhaus, M. (1998). La regression PLS: theorie et pratique. Paris:
Editions Technic.
See also
--------
PLSCanonical
PLSSVD
"""
@_deprecate_positional_args
def __init__(self, n_components=2, *, scale=True,
max_iter=500, tol=1e-06, copy=True):
super().__init__(n_components=n_components, scale=scale,
deflation_mode="canonical", mode="B",
norm_y_weights=True, algorithm="nipals",
max_iter=max_iter, tol=tol, copy=copy)