82 lines
2.7 KiB
Python
82 lines
2.7 KiB
Python
import numpy as np
|
|
from skimage import data
|
|
from skimage.segmentation import felzenszwalb
|
|
|
|
from skimage._shared import testing
|
|
from skimage._shared.testing import (assert_greater, test_parallel,
|
|
assert_equal, assert_array_equal,
|
|
assert_warns, assert_no_warnings)
|
|
|
|
|
|
@test_parallel()
|
|
def test_grey():
|
|
# very weak tests.
|
|
img = np.zeros((20, 21))
|
|
img[:10, 10:] = 0.2
|
|
img[10:, :10] = 0.4
|
|
img[10:, 10:] = 0.6
|
|
seg = felzenszwalb(img, sigma=0)
|
|
# we expect 4 segments:
|
|
assert_equal(len(np.unique(seg)), 4)
|
|
# that mostly respect the 4 regions:
|
|
for i in range(4):
|
|
hist = np.histogram(img[seg == i], bins=[0, 0.1, 0.3, 0.5, 1])[0]
|
|
assert_greater(hist[i], 40)
|
|
|
|
|
|
def test_minsize():
|
|
# single-channel:
|
|
img = data.coins()[20:168, 0:128]
|
|
for min_size in np.arange(10, 100, 10):
|
|
segments = felzenszwalb(img, min_size=min_size, sigma=3)
|
|
counts = np.bincount(segments.ravel())
|
|
# actually want to test greater or equal.
|
|
assert_greater(counts.min() + 1, min_size)
|
|
# multi-channel:
|
|
coffee = data.coffee()[::4, ::4]
|
|
for min_size in np.arange(10, 100, 10):
|
|
segments = felzenszwalb(coffee, min_size=min_size, sigma=3)
|
|
counts = np.bincount(segments.ravel())
|
|
# actually want to test greater or equal.
|
|
assert_greater(counts.min() + 1, min_size)
|
|
|
|
|
|
def test_3D():
|
|
grey_img = np.zeros((10, 10))
|
|
rgb_img = np.zeros((10, 10, 3))
|
|
three_d_img = np.zeros((10, 10, 10))
|
|
with assert_no_warnings():
|
|
felzenszwalb(grey_img, multichannel=True)
|
|
felzenszwalb(grey_img, multichannel=False)
|
|
felzenszwalb(rgb_img, multichannel=True)
|
|
with assert_warns(RuntimeWarning):
|
|
felzenszwalb(three_d_img, multichannel=True)
|
|
with testing.raises(ValueError):
|
|
felzenszwalb(rgb_img, multichannel=False)
|
|
felzenszwalb(three_d_img, multichannel=False)
|
|
|
|
|
|
def test_color():
|
|
# very weak tests.
|
|
img = np.zeros((20, 21, 3))
|
|
img[:10, :10, 0] = 1
|
|
img[10:, :10, 1] = 1
|
|
img[10:, 10:, 2] = 1
|
|
seg = felzenszwalb(img, sigma=0)
|
|
# we expect 4 segments:
|
|
assert_equal(len(np.unique(seg)), 4)
|
|
assert_array_equal(seg[:10, :10], 0)
|
|
assert_array_equal(seg[10:, :10], 2)
|
|
assert_array_equal(seg[:10, 10:], 1)
|
|
assert_array_equal(seg[10:, 10:], 3)
|
|
|
|
|
|
def test_merging():
|
|
# test region merging in the post-processing step
|
|
img = np.array([[0, 0.3], [0.7, 1]])
|
|
# With scale=0, only the post-processing is performed.
|
|
seg = felzenszwalb(img, scale=0, sigma=0, min_size=2)
|
|
# we expect 2 segments:
|
|
assert_equal(len(np.unique(seg)), 2)
|
|
assert_array_equal(seg[0, :], 0)
|
|
assert_array_equal(seg[1, :], 1)
|