Vehicle-Anti-Theft-Face-Rec.../venv/Lib/site-packages/skimage/segmentation/tests/test_chan_vese.py

90 lines
3.1 KiB
Python

import numpy as np
from skimage.segmentation import chan_vese
from skimage._shared import testing
from skimage._shared.testing import assert_array_equal
def test_chan_vese_flat_level_set():
# because the algorithm evolves the level set around the
# zero-level, it the level-set has no zero level, the algorithm
# will not produce results in theory. However, since a continuous
# approximation of the delta function is used, the algorithm
# still affects the entirety of the level-set. Therefore with
# infinite time, the segmentation will still converge.
img = np.zeros((10, 10))
img[3:6, 3:6] = np.ones((3, 3))
ls = np.full((10, 10), 1000)
result = chan_vese(img, mu=0.0, tol=1e-3, init_level_set=ls)
assert_array_equal(result.astype(np.float), np.ones((10, 10)))
result = chan_vese(img, mu=0.0, tol=1e-3, init_level_set=-ls)
assert_array_equal(result.astype(np.float), np.zeros((10, 10)))
def test_chan_vese_small_disk_level_set():
img = np.zeros((10, 10))
img[3:6, 3:6] = np.ones((3, 3))
result = chan_vese(img, mu=0.0, tol=1e-3, init_level_set="small disk")
assert_array_equal(result.astype(np.float), img)
def test_chan_vese_simple_shape():
img = np.zeros((10, 10))
img[3:6, 3:6] = np.ones((3, 3))
result = chan_vese(img, mu=0.0, tol=1e-8).astype(np.float)
assert_array_equal(result, img)
def test_chan_vese_extended_output():
img = np.zeros((10, 10))
img[3:6, 3:6] = np.ones((3, 3))
result = chan_vese(img, mu=0.0, tol=1e-8, extended_output=True)
assert_array_equal(len(result), 3)
def test_chan_vese_remove_noise():
ref = np.zeros((10, 10))
ref[1:6, 1:6] = np.array([[0, 1, 1, 1, 0],
[1, 1, 1, 1, 1],
[1, 1, 1, 1, 1],
[1, 1, 1, 1, 1],
[0, 1, 1, 1, 0]])
img = ref.copy()
img[8, 3] = 1
result = chan_vese(img, mu=0.3, tol=1e-3, max_iter=100, dt=10,
init_level_set="disk").astype(np.float)
assert_array_equal(result, ref)
def test_chan_vese_incorrect_image_type():
img = np.zeros((10, 10, 3))
ls = np.zeros((10, 9))
with testing.raises(ValueError):
chan_vese(img, mu=0.0, init_level_set=ls)
def test_chan_vese_gap_closing():
ref = np.zeros((20, 20))
ref[8:15, :] = np.ones((7, 20))
img = ref.copy()
img[:, 6] = np.zeros((20))
result = chan_vese(img, mu=0.7, tol=1e-3, max_iter=1000, dt=1000,
init_level_set="disk").astype(np.float)
assert_array_equal(result, ref)
def test_chan_vese_incorrect_level_set():
img = np.zeros((10, 10))
ls = np.zeros((10, 9))
with testing.raises(ValueError):
chan_vese(img, mu=0.0, init_level_set=ls)
with testing.raises(ValueError):
chan_vese(img, mu=0.0, init_level_set="a")
def test_chan_vese_blank_image():
img = np.zeros((10, 10))
level_set = np.random.rand(10, 10)
ref = level_set > 0
result = chan_vese(img, mu=0.0, tol=0.0, init_level_set=level_set)
assert_array_equal(result, ref)