276 lines
10 KiB
Python
276 lines
10 KiB
Python
import numpy as np
|
|
from scipy import ndimage as ndi
|
|
|
|
from skimage import color, data, transform
|
|
from skimage.util import img_as_uint, img_as_ubyte
|
|
from skimage.morphology import grey, selem
|
|
from skimage._shared._warnings import expected_warnings
|
|
from skimage._shared import testing
|
|
from skimage._shared.testing import (assert_array_equal, assert_equal,
|
|
TestCase, parametrize, fetch)
|
|
|
|
|
|
class TestMorphology(TestCase):
|
|
|
|
# These expected outputs were generated with skimage v0.12.1
|
|
# using:
|
|
#
|
|
# from skimage.morphology.tests.test_grey import TestMorphology
|
|
# import numpy as np
|
|
# output = TestMorphology()._build_expected_output()
|
|
# np.savez_compressed('gray_morph_output.npz', **output)
|
|
|
|
def _build_expected_output(self):
|
|
funcs = (grey.erosion, grey.dilation, grey.opening, grey.closing,
|
|
grey.white_tophat, grey.black_tophat)
|
|
selems_2D = (selem.square, selem.diamond,
|
|
selem.disk, selem.star)
|
|
|
|
image = img_as_ubyte(transform.downscale_local_mean(
|
|
color.rgb2gray(data.coffee()), (20, 20)))
|
|
|
|
output = {}
|
|
for n in range(1, 4):
|
|
for strel in selems_2D:
|
|
for func in funcs:
|
|
key = '{0}_{1}_{2}'.format(
|
|
strel.__name__, n, func.__name__)
|
|
output[key] = func(image, strel(n))
|
|
|
|
return output
|
|
|
|
def test_gray_morphology(self):
|
|
expected = dict(np.load(fetch('data/gray_morph_output.npz')))
|
|
calculated = self._build_expected_output()
|
|
assert_equal(expected, calculated)
|
|
|
|
|
|
class TestEccentricStructuringElements(TestCase):
|
|
def setUp(self):
|
|
self.black_pixel = 255 * np.ones((4, 4), dtype=np.uint8)
|
|
self.black_pixel[1, 1] = 0
|
|
self.white_pixel = 255 - self.black_pixel
|
|
self.selems = [selem.square(2), selem.rectangle(2, 2),
|
|
selem.rectangle(2, 1), selem.rectangle(1, 2)]
|
|
|
|
def test_dilate_erode_symmetry(self):
|
|
for s in self.selems:
|
|
c = grey.erosion(self.black_pixel, s)
|
|
d = grey.dilation(self.white_pixel, s)
|
|
assert np.all(c == (255 - d))
|
|
|
|
def test_open_black_pixel(self):
|
|
for s in self.selems:
|
|
grey_open = grey.opening(self.black_pixel, s)
|
|
assert np.all(grey_open == self.black_pixel)
|
|
|
|
def test_close_white_pixel(self):
|
|
for s in self.selems:
|
|
grey_close = grey.closing(self.white_pixel, s)
|
|
assert np.all(grey_close == self.white_pixel)
|
|
|
|
def test_open_white_pixel(self):
|
|
for s in self.selems:
|
|
assert np.all(grey.opening(self.white_pixel, s) == 0)
|
|
|
|
def test_close_black_pixel(self):
|
|
for s in self.selems:
|
|
assert np.all(grey.closing(self.black_pixel, s) == 255)
|
|
|
|
def test_white_tophat_white_pixel(self):
|
|
for s in self.selems:
|
|
tophat = grey.white_tophat(self.white_pixel, s)
|
|
assert np.all(tophat == self.white_pixel)
|
|
|
|
def test_black_tophat_black_pixel(self):
|
|
for s in self.selems:
|
|
tophat = grey.black_tophat(self.black_pixel, s)
|
|
assert np.all(tophat == (255 - self.black_pixel))
|
|
|
|
def test_white_tophat_black_pixel(self):
|
|
for s in self.selems:
|
|
tophat = grey.white_tophat(self.black_pixel, s)
|
|
assert np.all(tophat == 0)
|
|
|
|
def test_black_tophat_white_pixel(self):
|
|
for s in self.selems:
|
|
tophat = grey.black_tophat(self.white_pixel, s)
|
|
assert np.all(tophat == 0)
|
|
|
|
|
|
grey_functions = [grey.erosion, grey.dilation,
|
|
grey.opening, grey.closing,
|
|
grey.white_tophat, grey.black_tophat]
|
|
|
|
|
|
@parametrize("function", grey_functions)
|
|
def test_default_selem(function):
|
|
strel = selem.diamond(radius=1)
|
|
image = np.array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
|
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
|
[0, 0, 1, 1, 1, 1, 1, 1, 0, 0],
|
|
[0, 0, 1, 1, 1, 1, 1, 1, 0, 0],
|
|
[0, 0, 1, 1, 1, 1, 1, 1, 0, 0],
|
|
[0, 0, 1, 1, 1, 0, 0, 1, 0, 0],
|
|
[0, 0, 1, 1, 1, 0, 0, 1, 0, 0],
|
|
[0, 0, 1, 1, 1, 0, 0, 1, 0, 0],
|
|
[0, 0, 1, 1, 1, 1, 1, 1, 0, 0],
|
|
[0, 0, 1, 1, 1, 1, 1, 1, 0, 0],
|
|
[0, 0, 1, 1, 1, 1, 1, 1, 0, 0],
|
|
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
|
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], np.uint8)
|
|
im_expected = function(image, strel)
|
|
im_test = function(image)
|
|
testing.assert_array_equal(im_expected, im_test)
|
|
|
|
|
|
def test_3d_fallback_default_selem():
|
|
# 3x3x3 cube inside a 7x7x7 image:
|
|
image = np.zeros((7, 7, 7), np.bool)
|
|
image[2:-2, 2:-2, 2:-2] = 1
|
|
|
|
opened = grey.opening(image)
|
|
|
|
# expect a "hyper-cross" centered in the 5x5x5:
|
|
image_expected = np.zeros((7, 7, 7), dtype=bool)
|
|
image_expected[2:5, 2:5, 2:5] = ndi.generate_binary_structure(3, 1)
|
|
assert_array_equal(opened, image_expected)
|
|
|
|
|
|
grey_3d_fallback_functions = [grey.closing, grey.opening]
|
|
|
|
|
|
@parametrize("function", grey_3d_fallback_functions)
|
|
def test_3d_fallback_cube_selem(function):
|
|
# 3x3x3 cube inside a 7x7x7 image:
|
|
image = np.zeros((7, 7, 7), np.bool)
|
|
image[2:-2, 2:-2, 2:-2] = 1
|
|
|
|
cube = np.ones((3, 3, 3), dtype=np.uint8)
|
|
|
|
new_image = function(image, cube)
|
|
testing.assert_array_equal(new_image, image)
|
|
|
|
|
|
def test_3d_fallback_white_tophat():
|
|
image = np.zeros((7, 7, 7), dtype=bool)
|
|
image[2, 2:4, 2:4] = 1
|
|
image[3, 2:5, 2:5] = 1
|
|
image[4, 3:5, 3:5] = 1
|
|
|
|
with expected_warnings([r'operator.*deprecated|\A\Z']):
|
|
new_image = grey.white_tophat(image)
|
|
footprint = ndi.generate_binary_structure(3, 1)
|
|
with expected_warnings([r'operator.*deprecated|\A\Z']):
|
|
image_expected = ndi.white_tophat(
|
|
image.view(dtype=np.uint8), footprint=footprint)
|
|
assert_array_equal(new_image, image_expected)
|
|
|
|
|
|
def test_3d_fallback_black_tophat():
|
|
image = np.ones((7, 7, 7), dtype=bool)
|
|
image[2, 2:4, 2:4] = 0
|
|
image[3, 2:5, 2:5] = 0
|
|
image[4, 3:5, 3:5] = 0
|
|
|
|
with expected_warnings([r'operator.*deprecated|\A\Z']):
|
|
new_image = grey.black_tophat(image)
|
|
footprint = ndi.generate_binary_structure(3, 1)
|
|
with expected_warnings([r'operator.*deprecated|\A\Z']):
|
|
image_expected = ndi.black_tophat(
|
|
image.view(dtype=np.uint8), footprint=footprint)
|
|
assert_array_equal(new_image, image_expected)
|
|
|
|
|
|
def test_2d_ndimage_equivalence():
|
|
image = np.zeros((9, 9), np.uint8)
|
|
image[2:-2, 2:-2] = 128
|
|
image[3:-3, 3:-3] = 196
|
|
image[4, 4] = 255
|
|
|
|
opened = grey.opening(image)
|
|
closed = grey.closing(image)
|
|
|
|
selem = ndi.generate_binary_structure(2, 1)
|
|
ndimage_opened = ndi.grey_opening(image, footprint=selem)
|
|
ndimage_closed = ndi.grey_closing(image, footprint=selem)
|
|
|
|
assert_array_equal(opened, ndimage_opened)
|
|
assert_array_equal(closed, ndimage_closed)
|
|
|
|
|
|
# float test images
|
|
im = np.array([[ 0.55, 0.72, 0.6 , 0.54, 0.42],
|
|
[ 0.65, 0.44, 0.89, 0.96, 0.38],
|
|
[ 0.79, 0.53, 0.57, 0.93, 0.07],
|
|
[ 0.09, 0.02, 0.83, 0.78, 0.87],
|
|
[ 0.98, 0.8 , 0.46, 0.78, 0.12]])
|
|
|
|
eroded = np.array([[ 0.55, 0.44, 0.54, 0.42, 0.38],
|
|
[ 0.44, 0.44, 0.44, 0.38, 0.07],
|
|
[ 0.09, 0.02, 0.53, 0.07, 0.07],
|
|
[ 0.02, 0.02, 0.02, 0.78, 0.07],
|
|
[ 0.09, 0.02, 0.46, 0.12, 0.12]])
|
|
|
|
dilated = np.array([[ 0.72, 0.72, 0.89, 0.96, 0.54],
|
|
[ 0.79, 0.89, 0.96, 0.96, 0.96],
|
|
[ 0.79, 0.79, 0.93, 0.96, 0.93],
|
|
[ 0.98, 0.83, 0.83, 0.93, 0.87],
|
|
[ 0.98, 0.98, 0.83, 0.78, 0.87]])
|
|
|
|
opened = np.array([[ 0.55, 0.55, 0.54, 0.54, 0.42],
|
|
[ 0.55, 0.44, 0.54, 0.44, 0.38],
|
|
[ 0.44, 0.53, 0.53, 0.78, 0.07],
|
|
[ 0.09, 0.02, 0.78, 0.78, 0.78],
|
|
[ 0.09, 0.46, 0.46, 0.78, 0.12]])
|
|
|
|
closed = np.array([[ 0.72, 0.72, 0.72, 0.54, 0.54],
|
|
[ 0.72, 0.72, 0.89, 0.96, 0.54],
|
|
[ 0.79, 0.79, 0.79, 0.93, 0.87],
|
|
[ 0.79, 0.79, 0.83, 0.78, 0.87],
|
|
[ 0.98, 0.83, 0.78, 0.78, 0.78]])
|
|
|
|
|
|
def test_float():
|
|
np.testing.assert_allclose(grey.erosion(im), eroded)
|
|
np.testing.assert_allclose(grey.dilation(im), dilated)
|
|
np.testing.assert_allclose(grey.opening(im), opened)
|
|
np.testing.assert_allclose(grey.closing(im), closed)
|
|
|
|
|
|
def test_uint16():
|
|
im16, eroded16, dilated16, opened16, closed16 = (
|
|
map(img_as_uint, [im, eroded, dilated, opened, closed]))
|
|
np.testing.assert_allclose(grey.erosion(im16), eroded16)
|
|
np.testing.assert_allclose(grey.dilation(im16), dilated16)
|
|
np.testing.assert_allclose(grey.opening(im16), opened16)
|
|
np.testing.assert_allclose(grey.closing(im16), closed16)
|
|
|
|
|
|
def test_discontiguous_out_array():
|
|
image = np.array([[5, 6, 2],
|
|
[7, 2, 2],
|
|
[3, 5, 1]], np.uint8)
|
|
out_array_big = np.zeros((5, 5), np.uint8)
|
|
out_array = out_array_big[::2, ::2]
|
|
expected_dilation = np.array([[7, 0, 6, 0, 6],
|
|
[0, 0, 0, 0, 0],
|
|
[7, 0, 7, 0, 2],
|
|
[0, 0, 0, 0, 0],
|
|
[7, 0, 5, 0, 5]], np.uint8)
|
|
expected_erosion = np.array([[5, 0, 2, 0, 2],
|
|
[0, 0, 0, 0, 0],
|
|
[2, 0, 2, 0, 1],
|
|
[0, 0, 0, 0, 0],
|
|
[3, 0, 1, 0, 1]], np.uint8)
|
|
grey.dilation(image, out=out_array)
|
|
assert_array_equal(out_array_big, expected_dilation)
|
|
grey.erosion(image, out=out_array)
|
|
testing.assert_array_equal(out_array_big, expected_erosion)
|
|
|
|
|
|
def test_1d_erosion():
|
|
image = np.array([1, 2, 3, 2, 1])
|
|
expected = np.array([1, 1, 2, 1, 1])
|
|
eroded = grey.erosion(image)
|
|
testing.assert_array_equal(eroded, expected)
|