Vehicle-Anti-Theft-Face-Rec.../venv/Lib/site-packages/skimage/io/tests/test_tifffile.py

75 lines
2.2 KiB
Python

import itertools
from tempfile import NamedTemporaryFile
from skimage.io import imread, imsave, use_plugin, reset_plugins
import numpy as np
from skimage._shared.testing import (assert_array_equal,
assert_array_almost_equal,
parametrize, fetch)
from skimage._shared import testing
def setup():
use_plugin('tifffile')
np.random.seed(0)
def teardown():
reset_plugins()
def test_imread_uint16():
expected = np.load(fetch('data/chessboard_GRAY_U8.npy'))
img = imread(fetch('data/chessboard_GRAY_U16.tif'))
assert img.dtype == np.uint16
assert_array_almost_equal(img, expected)
def test_imread_uint16_big_endian():
expected = np.load(fetch('data/chessboard_GRAY_U8.npy'))
img = imread(fetch('data/chessboard_GRAY_U16B.tif'))
assert img.dtype == np.uint16
assert_array_almost_equal(img, expected)
def test_imread_multipage_rgb_tif():
img = imread(fetch('data/multipage_rgb.tif'))
assert img.shape == (2, 10, 10, 3), img.shape
def test_tifffile_kwarg_passthrough ():
img = imread(fetch('data/multipage.tif'), key=[1],
multifile=False, multifile_close=True, fastij=True,
is_ome=True)
assert img.shape == (15, 10), img.shape
def test_imread_handle():
expected = np.load(fetch('data/chessboard_GRAY_U8.npy'))
with open(fetch('data/chessboard_GRAY_U16.tif'), 'rb') as fh:
img = imread(fh)
assert img.dtype == np.uint16
assert_array_almost_equal(img, expected)
class TestSave:
def roundtrip(self, dtype, x):
f = NamedTemporaryFile(suffix='.tif')
fname = f.name
f.close()
imsave(fname, x, check_contrast=False)
y = imread(fname)
assert_array_equal(x, y)
shapes = ((10, 10), (10, 10, 3), (10, 10, 4))
dtypes = (np.uint8, np.uint16, np.float32, np.int16, np.float64)
@parametrize("shape, dtype", itertools.product(shapes, dtypes))
def test_imsave_roundtrip(self, shape, dtype):
x = np.random.rand(*shape)
if not np.issubdtype(dtype, np.floating):
x = (x * np.iinfo(dtype).max).astype(dtype)
else:
x = x.astype(dtype)
self.roundtrip(dtype, x)