75 lines
2.2 KiB
Python
75 lines
2.2 KiB
Python
import itertools
|
|
from tempfile import NamedTemporaryFile
|
|
from skimage.io import imread, imsave, use_plugin, reset_plugins
|
|
import numpy as np
|
|
|
|
from skimage._shared.testing import (assert_array_equal,
|
|
assert_array_almost_equal,
|
|
parametrize, fetch)
|
|
from skimage._shared import testing
|
|
|
|
|
|
def setup():
|
|
use_plugin('tifffile')
|
|
np.random.seed(0)
|
|
|
|
|
|
def teardown():
|
|
reset_plugins()
|
|
|
|
|
|
def test_imread_uint16():
|
|
expected = np.load(fetch('data/chessboard_GRAY_U8.npy'))
|
|
img = imread(fetch('data/chessboard_GRAY_U16.tif'))
|
|
assert img.dtype == np.uint16
|
|
assert_array_almost_equal(img, expected)
|
|
|
|
|
|
def test_imread_uint16_big_endian():
|
|
expected = np.load(fetch('data/chessboard_GRAY_U8.npy'))
|
|
img = imread(fetch('data/chessboard_GRAY_U16B.tif'))
|
|
assert img.dtype == np.uint16
|
|
assert_array_almost_equal(img, expected)
|
|
|
|
|
|
def test_imread_multipage_rgb_tif():
|
|
img = imread(fetch('data/multipage_rgb.tif'))
|
|
assert img.shape == (2, 10, 10, 3), img.shape
|
|
|
|
|
|
def test_tifffile_kwarg_passthrough ():
|
|
img = imread(fetch('data/multipage.tif'), key=[1],
|
|
multifile=False, multifile_close=True, fastij=True,
|
|
is_ome=True)
|
|
assert img.shape == (15, 10), img.shape
|
|
|
|
|
|
def test_imread_handle():
|
|
expected = np.load(fetch('data/chessboard_GRAY_U8.npy'))
|
|
with open(fetch('data/chessboard_GRAY_U16.tif'), 'rb') as fh:
|
|
img = imread(fh)
|
|
assert img.dtype == np.uint16
|
|
assert_array_almost_equal(img, expected)
|
|
|
|
|
|
class TestSave:
|
|
def roundtrip(self, dtype, x):
|
|
f = NamedTemporaryFile(suffix='.tif')
|
|
fname = f.name
|
|
f.close()
|
|
imsave(fname, x, check_contrast=False)
|
|
y = imread(fname)
|
|
assert_array_equal(x, y)
|
|
|
|
shapes = ((10, 10), (10, 10, 3), (10, 10, 4))
|
|
dtypes = (np.uint8, np.uint16, np.float32, np.int16, np.float64)
|
|
|
|
@parametrize("shape, dtype", itertools.product(shapes, dtypes))
|
|
def test_imsave_roundtrip(self, shape, dtype):
|
|
x = np.random.rand(*shape)
|
|
|
|
if not np.issubdtype(dtype, np.floating):
|
|
x = (x * np.iinfo(dtype).max).astype(dtype)
|
|
else:
|
|
x = x.astype(dtype)
|
|
self.roundtrip(dtype, x)
|