Vehicle-Anti-Theft-Face-Rec.../venv/Lib/site-packages/skimage/graph/tests/test_mcp.py

161 lines
5.9 KiB
Python

import numpy as np
import skimage.graph.mcp as mcp
from skimage._shared.testing import (assert_array_equal, assert_almost_equal,
parametrize)
from skimage._shared._warnings import expected_warnings
np.random.seed(0)
a = np.ones((8, 8), dtype=np.float32)
a[1:-1, 1] = 0
a[1, 1:-1] = 0
warning_optional = r'|\A\Z'
def test_basic():
with expected_warnings(['Upgrading NumPy' + warning_optional]):
m = mcp.MCP(a, fully_connected=True)
costs, traceback = m.find_costs([(1, 6)])
return_path = m.traceback((7, 2))
assert_array_equal(costs,
[[1., 1., 1., 1., 1., 1., 1., 1.],
[1., 0., 0., 0., 0., 0., 0., 1.],
[1., 0., 1., 1., 1., 1., 1., 1.],
[1., 0., 1., 2., 2., 2., 2., 2.],
[1., 0., 1., 2., 3., 3., 3., 3.],
[1., 0., 1., 2., 3., 4., 4., 4.],
[1., 0., 1., 2., 3., 4., 5., 5.],
[1., 1., 1., 2., 3., 4., 5., 6.]])
assert_array_equal(return_path,
[(1, 6),
(1, 5),
(1, 4),
(1, 3),
(1, 2),
(2, 1),
(3, 1),
(4, 1),
(5, 1),
(6, 1),
(7, 2)])
def test_neg_inf():
expected_costs = np.where(a == 1, np.inf, 0)
expected_path = [(1, 6),
(1, 5),
(1, 4),
(1, 3),
(1, 2),
(2, 1),
(3, 1),
(4, 1),
(5, 1),
(6, 1)]
test_neg = np.where(a == 1, -1, 0)
test_inf = np.where(a == 1, np.inf, 0)
with expected_warnings(['Upgrading NumPy' + warning_optional]):
m = mcp.MCP(test_neg, fully_connected=True)
costs, traceback = m.find_costs([(1, 6)])
return_path = m.traceback((6, 1))
assert_array_equal(costs, expected_costs)
assert_array_equal(return_path, expected_path)
with expected_warnings(['Upgrading NumPy' + warning_optional]):
m = mcp.MCP(test_inf, fully_connected=True)
costs, traceback = m.find_costs([(1, 6)])
return_path = m.traceback((6, 1))
assert_array_equal(costs, expected_costs)
assert_array_equal(return_path, expected_path)
def test_route():
with expected_warnings(['Upgrading NumPy' + warning_optional]):
return_path, cost = mcp.route_through_array(a, (1, 6), (7, 2),
geometric=True)
assert_almost_equal(cost, np.sqrt(2) / 2)
assert_array_equal(return_path,
[(1, 6),
(1, 5),
(1, 4),
(1, 3),
(1, 2),
(2, 1),
(3, 1),
(4, 1),
(5, 1),
(6, 1),
(7, 2)])
def test_no_diagonal():
with expected_warnings(['Upgrading NumPy' + warning_optional]):
m = mcp.MCP(a, fully_connected=False)
costs, traceback = m.find_costs([(1, 6)])
return_path = m.traceback((7, 2))
assert_array_equal(costs,
[[2., 1., 1., 1., 1., 1., 1., 2.],
[1., 0., 0., 0., 0., 0., 0., 1.],
[1., 0., 1., 1., 1., 1., 1., 2.],
[1., 0., 1., 2., 2., 2., 2., 3.],
[1., 0., 1., 2., 3., 3., 3., 4.],
[1., 0., 1., 2., 3., 4., 4., 5.],
[1., 0., 1., 2., 3., 4., 5., 6.],
[2., 1., 2., 3., 4., 5., 6., 7.]])
assert_array_equal(return_path,
[(1, 6),
(1, 5),
(1, 4),
(1, 3),
(1, 2),
(1, 1),
(2, 1),
(3, 1),
(4, 1),
(5, 1),
(6, 1),
(7, 1),
(7, 2)])
def test_offsets():
offsets = [(1, i) for i in range(10)] + [(1, -i) for i in range(1, 10)]
with expected_warnings(['Upgrading NumPy' + warning_optional]):
m = mcp.MCP(a, offsets=offsets)
costs, traceback = m.find_costs([(1, 6)])
assert_array_equal(traceback,
[[-2, -2, -2, -2, -2, -2, -2, -2],
[-2, -2, -2, -2, -2, -2, -1, -2],
[15, 14, 13, 12, 11, 10, 0, 1],
[10, 0, 1, 2, 3, 4, 5, 6],
[10, 0, 1, 2, 3, 4, 5, 6],
[10, 0, 1, 2, 3, 4, 5, 6],
[10, 0, 1, 2, 3, 4, 5, 6],
[10, 0, 1, 2, 3, 4, 5, 6]])
@parametrize("shape", [(100, 100), (5, 8, 13, 17)] * 5)
def test_crashing(shape):
_test_random(shape)
def _test_random(shape):
# Just tests for crashing -- not for correctness.
a = np.random.rand(*shape).astype(np.float32)
starts = [[0] * len(shape), [-1] * len(shape),
(np.random.rand(len(shape)) * shape).astype(int)]
ends = [(np.random.rand(len(shape)) * shape).astype(int)
for i in range(4)]
with expected_warnings(['Upgrading NumPy' + warning_optional]):
m = mcp.MCP(a, fully_connected=True)
costs, offsets = m.find_costs(starts)
for point in [(np.random.rand(len(shape)) * shape).astype(int)
for i in range(4)]:
m.traceback(point)
m._reset()
m.find_costs(starts, ends)
for end in ends:
m.traceback(end)
return a, costs, offsets