Vehicle-Anti-Theft-Face-Rec.../venv/Lib/site-packages/scipy/optimize/tests/test_linear_assignment.py

102 lines
3.1 KiB
Python

# Author: Brian M. Clapper, G. Varoquaux, Lars Buitinck
# License: BSD
from numpy.testing import assert_array_equal
from pytest import raises as assert_raises
import numpy as np
from scipy.optimize import linear_sum_assignment
from scipy.sparse.sputils import matrix
def test_linear_sum_assignment():
for sign in [-1, 1]:
for cost_matrix, expected_cost in [
# Square
([[400, 150, 400],
[400, 450, 600],
[300, 225, 300]],
[150, 400, 300]
),
# Rectangular variant
([[400, 150, 400, 1],
[400, 450, 600, 2],
[300, 225, 300, 3]],
[150, 2, 300]),
# Square
([[10, 10, 8],
[9, 8, 1],
[9, 7, 4]],
[10, 1, 7]),
# Rectangular variant
([[10, 10, 8, 11],
[9, 8, 1, 1],
[9, 7, 4, 10]],
[10, 1, 4]),
# n == 2, m == 0 matrix
([[], []],
[]),
# Square with positive infinities
([[10, float("inf"), float("inf")],
[float("inf"), float("inf"), 1],
[float("inf"), 7, float("inf")]],
[10, 1, 7]),
]:
maximize = sign == -1
cost_matrix = sign * np.array(cost_matrix)
expected_cost = sign * np.array(expected_cost)
row_ind, col_ind = linear_sum_assignment(cost_matrix,
maximize=maximize)
assert_array_equal(row_ind, np.sort(row_ind))
assert_array_equal(expected_cost, cost_matrix[row_ind, col_ind])
cost_matrix = cost_matrix.T
row_ind, col_ind = linear_sum_assignment(cost_matrix,
maximize=maximize)
assert_array_equal(row_ind, np.sort(row_ind))
assert_array_equal(np.sort(expected_cost),
np.sort(cost_matrix[row_ind, col_ind]))
def test_linear_sum_assignment_input_validation():
assert_raises(ValueError, linear_sum_assignment, [1, 2, 3])
C = [[1, 2, 3], [4, 5, 6]]
assert_array_equal(linear_sum_assignment(C),
linear_sum_assignment(np.asarray(C)))
assert_array_equal(linear_sum_assignment(C),
linear_sum_assignment(matrix(C)))
I = np.identity(3)
assert_array_equal(linear_sum_assignment(I.astype(np.bool_)),
linear_sum_assignment(I))
assert_raises(ValueError, linear_sum_assignment, I.astype(str))
I[0][0] = np.nan
assert_raises(ValueError, linear_sum_assignment, I)
I = np.identity(3)
I[1][1] = -np.inf
assert_raises(ValueError, linear_sum_assignment, I)
I = np.identity(3)
I[:, 0] = np.inf
assert_raises(ValueError, linear_sum_assignment, I)
def test_constant_cost_matrix():
# Fixes #11602
n = 8
C = np.ones((n, n))
row_ind, col_ind = linear_sum_assignment(C)
assert_array_equal(row_ind, np.arange(n))
assert_array_equal(col_ind, np.arange(n))