Vehicle-Anti-Theft-Face-Rec.../venv/Lib/site-packages/scipy/optimize/linesearch.py

901 lines
26 KiB
Python

"""
Functions
---------
.. autosummary::
:toctree: generated/
line_search_armijo
line_search_wolfe1
line_search_wolfe2
scalar_search_wolfe1
scalar_search_wolfe2
"""
from warnings import warn
from scipy.optimize import minpack2
import numpy as np
__all__ = ['LineSearchWarning', 'line_search_wolfe1', 'line_search_wolfe2',
'scalar_search_wolfe1', 'scalar_search_wolfe2',
'line_search_armijo']
class LineSearchWarning(RuntimeWarning):
pass
#------------------------------------------------------------------------------
# Minpack's Wolfe line and scalar searches
#------------------------------------------------------------------------------
def line_search_wolfe1(f, fprime, xk, pk, gfk=None,
old_fval=None, old_old_fval=None,
args=(), c1=1e-4, c2=0.9, amax=50, amin=1e-8,
xtol=1e-14):
"""
As `scalar_search_wolfe1` but do a line search to direction `pk`
Parameters
----------
f : callable
Function `f(x)`
fprime : callable
Gradient of `f`
xk : array_like
Current point
pk : array_like
Search direction
gfk : array_like, optional
Gradient of `f` at point `xk`
old_fval : float, optional
Value of `f` at point `xk`
old_old_fval : float, optional
Value of `f` at point preceding `xk`
The rest of the parameters are the same as for `scalar_search_wolfe1`.
Returns
-------
stp, f_count, g_count, fval, old_fval
As in `line_search_wolfe1`
gval : array
Gradient of `f` at the final point
"""
if gfk is None:
gfk = fprime(xk)
if isinstance(fprime, tuple):
eps = fprime[1]
fprime = fprime[0]
newargs = (f, eps) + args
gradient = False
else:
newargs = args
gradient = True
gval = [gfk]
gc = [0]
fc = [0]
def phi(s):
fc[0] += 1
return f(xk + s*pk, *args)
def derphi(s):
gval[0] = fprime(xk + s*pk, *newargs)
if gradient:
gc[0] += 1
else:
fc[0] += len(xk) + 1
return np.dot(gval[0], pk)
derphi0 = np.dot(gfk, pk)
stp, fval, old_fval = scalar_search_wolfe1(
phi, derphi, old_fval, old_old_fval, derphi0,
c1=c1, c2=c2, amax=amax, amin=amin, xtol=xtol)
return stp, fc[0], gc[0], fval, old_fval, gval[0]
def scalar_search_wolfe1(phi, derphi, phi0=None, old_phi0=None, derphi0=None,
c1=1e-4, c2=0.9,
amax=50, amin=1e-8, xtol=1e-14):
"""
Scalar function search for alpha that satisfies strong Wolfe conditions
alpha > 0 is assumed to be a descent direction.
Parameters
----------
phi : callable phi(alpha)
Function at point `alpha`
derphi : callable phi'(alpha)
Objective function derivative. Returns a scalar.
phi0 : float, optional
Value of phi at 0
old_phi0 : float, optional
Value of phi at previous point
derphi0 : float, optional
Value derphi at 0
c1 : float, optional
Parameter for Armijo condition rule.
c2 : float, optional
Parameter for curvature condition rule.
amax, amin : float, optional
Maximum and minimum step size
xtol : float, optional
Relative tolerance for an acceptable step.
Returns
-------
alpha : float
Step size, or None if no suitable step was found
phi : float
Value of `phi` at the new point `alpha`
phi0 : float
Value of `phi` at `alpha=0`
Notes
-----
Uses routine DCSRCH from MINPACK.
"""
if phi0 is None:
phi0 = phi(0.)
if derphi0 is None:
derphi0 = derphi(0.)
if old_phi0 is not None and derphi0 != 0:
alpha1 = min(1.0, 1.01*2*(phi0 - old_phi0)/derphi0)
if alpha1 < 0:
alpha1 = 1.0
else:
alpha1 = 1.0
phi1 = phi0
derphi1 = derphi0
isave = np.zeros((2,), np.intc)
dsave = np.zeros((13,), float)
task = b'START'
maxiter = 100
for i in range(maxiter):
stp, phi1, derphi1, task = minpack2.dcsrch(alpha1, phi1, derphi1,
c1, c2, xtol, task,
amin, amax, isave, dsave)
if task[:2] == b'FG':
alpha1 = stp
phi1 = phi(stp)
derphi1 = derphi(stp)
else:
break
else:
# maxiter reached, the line search did not converge
stp = None
if task[:5] == b'ERROR' or task[:4] == b'WARN':
stp = None # failed
return stp, phi1, phi0
line_search = line_search_wolfe1
#------------------------------------------------------------------------------
# Pure-Python Wolfe line and scalar searches
#------------------------------------------------------------------------------
def line_search_wolfe2(f, myfprime, xk, pk, gfk=None, old_fval=None,
old_old_fval=None, args=(), c1=1e-4, c2=0.9, amax=None,
extra_condition=None, maxiter=10):
"""Find alpha that satisfies strong Wolfe conditions.
Parameters
----------
f : callable f(x,*args)
Objective function.
myfprime : callable f'(x,*args)
Objective function gradient.
xk : ndarray
Starting point.
pk : ndarray
Search direction.
gfk : ndarray, optional
Gradient value for x=xk (xk being the current parameter
estimate). Will be recomputed if omitted.
old_fval : float, optional
Function value for x=xk. Will be recomputed if omitted.
old_old_fval : float, optional
Function value for the point preceding x=xk.
args : tuple, optional
Additional arguments passed to objective function.
c1 : float, optional
Parameter for Armijo condition rule.
c2 : float, optional
Parameter for curvature condition rule.
amax : float, optional
Maximum step size
extra_condition : callable, optional
A callable of the form ``extra_condition(alpha, x, f, g)``
returning a boolean. Arguments are the proposed step ``alpha``
and the corresponding ``x``, ``f`` and ``g`` values. The line search
accepts the value of ``alpha`` only if this
callable returns ``True``. If the callable returns ``False``
for the step length, the algorithm will continue with
new iterates. The callable is only called for iterates
satisfying the strong Wolfe conditions.
maxiter : int, optional
Maximum number of iterations to perform.
Returns
-------
alpha : float or None
Alpha for which ``x_new = x0 + alpha * pk``,
or None if the line search algorithm did not converge.
fc : int
Number of function evaluations made.
gc : int
Number of gradient evaluations made.
new_fval : float or None
New function value ``f(x_new)=f(x0+alpha*pk)``,
or None if the line search algorithm did not converge.
old_fval : float
Old function value ``f(x0)``.
new_slope : float or None
The local slope along the search direction at the
new value ``<myfprime(x_new), pk>``,
or None if the line search algorithm did not converge.
Notes
-----
Uses the line search algorithm to enforce strong Wolfe
conditions. See Wright and Nocedal, 'Numerical Optimization',
1999, pp. 59-61.
Examples
--------
>>> from scipy.optimize import line_search
A objective function and its gradient are defined.
>>> def obj_func(x):
... return (x[0])**2+(x[1])**2
>>> def obj_grad(x):
... return [2*x[0], 2*x[1]]
We can find alpha that satisfies strong Wolfe conditions.
>>> start_point = np.array([1.8, 1.7])
>>> search_gradient = np.array([-1.0, -1.0])
>>> line_search(obj_func, obj_grad, start_point, search_gradient)
(1.0, 2, 1, 1.1300000000000001, 6.13, [1.6, 1.4])
"""
fc = [0]
gc = [0]
gval = [None]
gval_alpha = [None]
def phi(alpha):
fc[0] += 1
return f(xk + alpha * pk, *args)
if isinstance(myfprime, tuple):
def derphi(alpha):
fc[0] += len(xk) + 1
eps = myfprime[1]
fprime = myfprime[0]
newargs = (f, eps) + args
gval[0] = fprime(xk + alpha * pk, *newargs) # store for later use
gval_alpha[0] = alpha
return np.dot(gval[0], pk)
else:
fprime = myfprime
def derphi(alpha):
gc[0] += 1
gval[0] = fprime(xk + alpha * pk, *args) # store for later use
gval_alpha[0] = alpha
return np.dot(gval[0], pk)
if gfk is None:
gfk = fprime(xk, *args)
derphi0 = np.dot(gfk, pk)
if extra_condition is not None:
# Add the current gradient as argument, to avoid needless
# re-evaluation
def extra_condition2(alpha, phi):
if gval_alpha[0] != alpha:
derphi(alpha)
x = xk + alpha * pk
return extra_condition(alpha, x, phi, gval[0])
else:
extra_condition2 = None
alpha_star, phi_star, old_fval, derphi_star = scalar_search_wolfe2(
phi, derphi, old_fval, old_old_fval, derphi0, c1, c2, amax,
extra_condition2, maxiter=maxiter)
if derphi_star is None:
warn('The line search algorithm did not converge', LineSearchWarning)
else:
# derphi_star is a number (derphi) -- so use the most recently
# calculated gradient used in computing it derphi = gfk*pk
# this is the gradient at the next step no need to compute it
# again in the outer loop.
derphi_star = gval[0]
return alpha_star, fc[0], gc[0], phi_star, old_fval, derphi_star
def scalar_search_wolfe2(phi, derphi, phi0=None,
old_phi0=None, derphi0=None,
c1=1e-4, c2=0.9, amax=None,
extra_condition=None, maxiter=10):
"""Find alpha that satisfies strong Wolfe conditions.
alpha > 0 is assumed to be a descent direction.
Parameters
----------
phi : callable phi(alpha)
Objective scalar function.
derphi : callable phi'(alpha)
Objective function derivative. Returns a scalar.
phi0 : float, optional
Value of phi at 0.
old_phi0 : float, optional
Value of phi at previous point.
derphi0 : float, optional
Value of derphi at 0
c1 : float, optional
Parameter for Armijo condition rule.
c2 : float, optional
Parameter for curvature condition rule.
amax : float, optional
Maximum step size.
extra_condition : callable, optional
A callable of the form ``extra_condition(alpha, phi_value)``
returning a boolean. The line search accepts the value
of ``alpha`` only if this callable returns ``True``.
If the callable returns ``False`` for the step length,
the algorithm will continue with new iterates.
The callable is only called for iterates satisfying
the strong Wolfe conditions.
maxiter : int, optional
Maximum number of iterations to perform.
Returns
-------
alpha_star : float or None
Best alpha, or None if the line search algorithm did not converge.
phi_star : float
phi at alpha_star.
phi0 : float
phi at 0.
derphi_star : float or None
derphi at alpha_star, or None if the line search algorithm
did not converge.
Notes
-----
Uses the line search algorithm to enforce strong Wolfe
conditions. See Wright and Nocedal, 'Numerical Optimization',
1999, pp. 59-61.
"""
if phi0 is None:
phi0 = phi(0.)
if derphi0 is None:
derphi0 = derphi(0.)
alpha0 = 0
if old_phi0 is not None and derphi0 != 0:
alpha1 = min(1.0, 1.01*2*(phi0 - old_phi0)/derphi0)
else:
alpha1 = 1.0
if alpha1 < 0:
alpha1 = 1.0
if amax is not None:
alpha1 = min(alpha1, amax)
phi_a1 = phi(alpha1)
#derphi_a1 = derphi(alpha1) evaluated below
phi_a0 = phi0
derphi_a0 = derphi0
if extra_condition is None:
extra_condition = lambda alpha, phi: True
for i in range(maxiter):
if alpha1 == 0 or (amax is not None and alpha0 == amax):
# alpha1 == 0: This shouldn't happen. Perhaps the increment has
# slipped below machine precision?
alpha_star = None
phi_star = phi0
phi0 = old_phi0
derphi_star = None
if alpha1 == 0:
msg = 'Rounding errors prevent the line search from converging'
else:
msg = "The line search algorithm could not find a solution " + \
"less than or equal to amax: %s" % amax
warn(msg, LineSearchWarning)
break
if (phi_a1 > phi0 + c1 * alpha1 * derphi0) or \
((phi_a1 >= phi_a0) and (i > 1)):
alpha_star, phi_star, derphi_star = \
_zoom(alpha0, alpha1, phi_a0,
phi_a1, derphi_a0, phi, derphi,
phi0, derphi0, c1, c2, extra_condition)
break
derphi_a1 = derphi(alpha1)
if (abs(derphi_a1) <= -c2*derphi0):
if extra_condition(alpha1, phi_a1):
alpha_star = alpha1
phi_star = phi_a1
derphi_star = derphi_a1
break
if (derphi_a1 >= 0):
alpha_star, phi_star, derphi_star = \
_zoom(alpha1, alpha0, phi_a1,
phi_a0, derphi_a1, phi, derphi,
phi0, derphi0, c1, c2, extra_condition)
break
alpha2 = 2 * alpha1 # increase by factor of two on each iteration
if amax is not None:
alpha2 = min(alpha2, amax)
alpha0 = alpha1
alpha1 = alpha2
phi_a0 = phi_a1
phi_a1 = phi(alpha1)
derphi_a0 = derphi_a1
else:
# stopping test maxiter reached
alpha_star = alpha1
phi_star = phi_a1
derphi_star = None
warn('The line search algorithm did not converge', LineSearchWarning)
return alpha_star, phi_star, phi0, derphi_star
def _cubicmin(a, fa, fpa, b, fb, c, fc):
"""
Finds the minimizer for a cubic polynomial that goes through the
points (a,fa), (b,fb), and (c,fc) with derivative at a of fpa.
If no minimizer can be found, return None.
"""
# f(x) = A *(x-a)^3 + B*(x-a)^2 + C*(x-a) + D
with np.errstate(divide='raise', over='raise', invalid='raise'):
try:
C = fpa
db = b - a
dc = c - a
denom = (db * dc) ** 2 * (db - dc)
d1 = np.empty((2, 2))
d1[0, 0] = dc ** 2
d1[0, 1] = -db ** 2
d1[1, 0] = -dc ** 3
d1[1, 1] = db ** 3
[A, B] = np.dot(d1, np.asarray([fb - fa - C * db,
fc - fa - C * dc]).flatten())
A /= denom
B /= denom
radical = B * B - 3 * A * C
xmin = a + (-B + np.sqrt(radical)) / (3 * A)
except ArithmeticError:
return None
if not np.isfinite(xmin):
return None
return xmin
def _quadmin(a, fa, fpa, b, fb):
"""
Finds the minimizer for a quadratic polynomial that goes through
the points (a,fa), (b,fb) with derivative at a of fpa.
"""
# f(x) = B*(x-a)^2 + C*(x-a) + D
with np.errstate(divide='raise', over='raise', invalid='raise'):
try:
D = fa
C = fpa
db = b - a * 1.0
B = (fb - D - C * db) / (db * db)
xmin = a - C / (2.0 * B)
except ArithmeticError:
return None
if not np.isfinite(xmin):
return None
return xmin
def _zoom(a_lo, a_hi, phi_lo, phi_hi, derphi_lo,
phi, derphi, phi0, derphi0, c1, c2, extra_condition):
"""Zoom stage of approximate linesearch satisfying strong Wolfe conditions.
Part of the optimization algorithm in `scalar_search_wolfe2`.
Notes
-----
Implements Algorithm 3.6 (zoom) in Wright and Nocedal,
'Numerical Optimization', 1999, pp. 61.
"""
maxiter = 10
i = 0
delta1 = 0.2 # cubic interpolant check
delta2 = 0.1 # quadratic interpolant check
phi_rec = phi0
a_rec = 0
while True:
# interpolate to find a trial step length between a_lo and
# a_hi Need to choose interpolation here. Use cubic
# interpolation and then if the result is within delta *
# dalpha or outside of the interval bounded by a_lo or a_hi
# then use quadratic interpolation, if the result is still too
# close, then use bisection
dalpha = a_hi - a_lo
if dalpha < 0:
a, b = a_hi, a_lo
else:
a, b = a_lo, a_hi
# minimizer of cubic interpolant
# (uses phi_lo, derphi_lo, phi_hi, and the most recent value of phi)
#
# if the result is too close to the end points (or out of the
# interval), then use quadratic interpolation with phi_lo,
# derphi_lo and phi_hi if the result is still too close to the
# end points (or out of the interval) then use bisection
if (i > 0):
cchk = delta1 * dalpha
a_j = _cubicmin(a_lo, phi_lo, derphi_lo, a_hi, phi_hi,
a_rec, phi_rec)
if (i == 0) or (a_j is None) or (a_j > b - cchk) or (a_j < a + cchk):
qchk = delta2 * dalpha
a_j = _quadmin(a_lo, phi_lo, derphi_lo, a_hi, phi_hi)
if (a_j is None) or (a_j > b-qchk) or (a_j < a+qchk):
a_j = a_lo + 0.5*dalpha
# Check new value of a_j
phi_aj = phi(a_j)
if (phi_aj > phi0 + c1*a_j*derphi0) or (phi_aj >= phi_lo):
phi_rec = phi_hi
a_rec = a_hi
a_hi = a_j
phi_hi = phi_aj
else:
derphi_aj = derphi(a_j)
if abs(derphi_aj) <= -c2*derphi0 and extra_condition(a_j, phi_aj):
a_star = a_j
val_star = phi_aj
valprime_star = derphi_aj
break
if derphi_aj*(a_hi - a_lo) >= 0:
phi_rec = phi_hi
a_rec = a_hi
a_hi = a_lo
phi_hi = phi_lo
else:
phi_rec = phi_lo
a_rec = a_lo
a_lo = a_j
phi_lo = phi_aj
derphi_lo = derphi_aj
i += 1
if (i > maxiter):
# Failed to find a conforming step size
a_star = None
val_star = None
valprime_star = None
break
return a_star, val_star, valprime_star
#------------------------------------------------------------------------------
# Armijo line and scalar searches
#------------------------------------------------------------------------------
def line_search_armijo(f, xk, pk, gfk, old_fval, args=(), c1=1e-4, alpha0=1):
"""Minimize over alpha, the function ``f(xk+alpha pk)``.
Parameters
----------
f : callable
Function to be minimized.
xk : array_like
Current point.
pk : array_like
Search direction.
gfk : array_like
Gradient of `f` at point `xk`.
old_fval : float
Value of `f` at point `xk`.
args : tuple, optional
Optional arguments.
c1 : float, optional
Value to control stopping criterion.
alpha0 : scalar, optional
Value of `alpha` at start of the optimization.
Returns
-------
alpha
f_count
f_val_at_alpha
Notes
-----
Uses the interpolation algorithm (Armijo backtracking) as suggested by
Wright and Nocedal in 'Numerical Optimization', 1999, pp. 56-57
"""
xk = np.atleast_1d(xk)
fc = [0]
def phi(alpha1):
fc[0] += 1
return f(xk + alpha1*pk, *args)
if old_fval is None:
phi0 = phi(0.)
else:
phi0 = old_fval # compute f(xk) -- done in past loop
derphi0 = np.dot(gfk, pk)
alpha, phi1 = scalar_search_armijo(phi, phi0, derphi0, c1=c1,
alpha0=alpha0)
return alpha, fc[0], phi1
def line_search_BFGS(f, xk, pk, gfk, old_fval, args=(), c1=1e-4, alpha0=1):
"""
Compatibility wrapper for `line_search_armijo`
"""
r = line_search_armijo(f, xk, pk, gfk, old_fval, args=args, c1=c1,
alpha0=alpha0)
return r[0], r[1], 0, r[2]
def scalar_search_armijo(phi, phi0, derphi0, c1=1e-4, alpha0=1, amin=0):
"""Minimize over alpha, the function ``phi(alpha)``.
Uses the interpolation algorithm (Armijo backtracking) as suggested by
Wright and Nocedal in 'Numerical Optimization', 1999, pp. 56-57
alpha > 0 is assumed to be a descent direction.
Returns
-------
alpha
phi1
"""
phi_a0 = phi(alpha0)
if phi_a0 <= phi0 + c1*alpha0*derphi0:
return alpha0, phi_a0
# Otherwise, compute the minimizer of a quadratic interpolant:
alpha1 = -(derphi0) * alpha0**2 / 2.0 / (phi_a0 - phi0 - derphi0 * alpha0)
phi_a1 = phi(alpha1)
if (phi_a1 <= phi0 + c1*alpha1*derphi0):
return alpha1, phi_a1
# Otherwise, loop with cubic interpolation until we find an alpha which
# satisfies the first Wolfe condition (since we are backtracking, we will
# assume that the value of alpha is not too small and satisfies the second
# condition.
while alpha1 > amin: # we are assuming alpha>0 is a descent direction
factor = alpha0**2 * alpha1**2 * (alpha1-alpha0)
a = alpha0**2 * (phi_a1 - phi0 - derphi0*alpha1) - \
alpha1**2 * (phi_a0 - phi0 - derphi0*alpha0)
a = a / factor
b = -alpha0**3 * (phi_a1 - phi0 - derphi0*alpha1) + \
alpha1**3 * (phi_a0 - phi0 - derphi0*alpha0)
b = b / factor
alpha2 = (-b + np.sqrt(abs(b**2 - 3 * a * derphi0))) / (3.0*a)
phi_a2 = phi(alpha2)
if (phi_a2 <= phi0 + c1*alpha2*derphi0):
return alpha2, phi_a2
if (alpha1 - alpha2) > alpha1 / 2.0 or (1 - alpha2/alpha1) < 0.96:
alpha2 = alpha1 / 2.0
alpha0 = alpha1
alpha1 = alpha2
phi_a0 = phi_a1
phi_a1 = phi_a2
# Failed to find a suitable step length
return None, phi_a1
#------------------------------------------------------------------------------
# Non-monotone line search for DF-SANE
#------------------------------------------------------------------------------
def _nonmonotone_line_search_cruz(f, x_k, d, prev_fs, eta,
gamma=1e-4, tau_min=0.1, tau_max=0.5):
"""
Nonmonotone backtracking line search as described in [1]_
Parameters
----------
f : callable
Function returning a tuple ``(f, F)`` where ``f`` is the value
of a merit function and ``F`` the residual.
x_k : ndarray
Initial position.
d : ndarray
Search direction.
prev_fs : float
List of previous merit function values. Should have ``len(prev_fs) <= M``
where ``M`` is the nonmonotonicity window parameter.
eta : float
Allowed merit function increase, see [1]_
gamma, tau_min, tau_max : float, optional
Search parameters, see [1]_
Returns
-------
alpha : float
Step length
xp : ndarray
Next position
fp : float
Merit function value at next position
Fp : ndarray
Residual at next position
References
----------
[1] "Spectral residual method without gradient information for solving
large-scale nonlinear systems of equations." W. La Cruz,
J.M. Martinez, M. Raydan. Math. Comp. **75**, 1429 (2006).
"""
f_k = prev_fs[-1]
f_bar = max(prev_fs)
alpha_p = 1
alpha_m = 1
alpha = 1
while True:
xp = x_k + alpha_p * d
fp, Fp = f(xp)
if fp <= f_bar + eta - gamma * alpha_p**2 * f_k:
alpha = alpha_p
break
alpha_tp = alpha_p**2 * f_k / (fp + (2*alpha_p - 1)*f_k)
xp = x_k - alpha_m * d
fp, Fp = f(xp)
if fp <= f_bar + eta - gamma * alpha_m**2 * f_k:
alpha = -alpha_m
break
alpha_tm = alpha_m**2 * f_k / (fp + (2*alpha_m - 1)*f_k)
alpha_p = np.clip(alpha_tp, tau_min * alpha_p, tau_max * alpha_p)
alpha_m = np.clip(alpha_tm, tau_min * alpha_m, tau_max * alpha_m)
return alpha, xp, fp, Fp
def _nonmonotone_line_search_cheng(f, x_k, d, f_k, C, Q, eta,
gamma=1e-4, tau_min=0.1, tau_max=0.5,
nu=0.85):
"""
Nonmonotone line search from [1]
Parameters
----------
f : callable
Function returning a tuple ``(f, F)`` where ``f`` is the value
of a merit function and ``F`` the residual.
x_k : ndarray
Initial position.
d : ndarray
Search direction.
f_k : float
Initial merit function value.
C, Q : float
Control parameters. On the first iteration, give values
Q=1.0, C=f_k
eta : float
Allowed merit function increase, see [1]_
nu, gamma, tau_min, tau_max : float, optional
Search parameters, see [1]_
Returns
-------
alpha : float
Step length
xp : ndarray
Next position
fp : float
Merit function value at next position
Fp : ndarray
Residual at next position
C : float
New value for the control parameter C
Q : float
New value for the control parameter Q
References
----------
.. [1] W. Cheng & D.-H. Li, ''A derivative-free nonmonotone line
search and its application to the spectral residual
method'', IMA J. Numer. Anal. 29, 814 (2009).
"""
alpha_p = 1
alpha_m = 1
alpha = 1
while True:
xp = x_k + alpha_p * d
fp, Fp = f(xp)
if fp <= C + eta - gamma * alpha_p**2 * f_k:
alpha = alpha_p
break
alpha_tp = alpha_p**2 * f_k / (fp + (2*alpha_p - 1)*f_k)
xp = x_k - alpha_m * d
fp, Fp = f(xp)
if fp <= C + eta - gamma * alpha_m**2 * f_k:
alpha = -alpha_m
break
alpha_tm = alpha_m**2 * f_k / (fp + (2*alpha_m - 1)*f_k)
alpha_p = np.clip(alpha_tp, tau_min * alpha_p, tau_max * alpha_p)
alpha_m = np.clip(alpha_tm, tau_min * alpha_m, tau_max * alpha_m)
# Update C and Q
Q_next = nu * Q + 1
C = (nu * Q * (C + eta) + fp) / Q_next
Q = Q_next
return alpha, xp, fp, Fp, C, Q