372 lines
13 KiB
Python
372 lines
13 KiB
Python
"""
|
|
An experimental support for curvilinear grid.
|
|
"""
|
|
|
|
# TODO :
|
|
# see if tick_iterator method can be simplified by reusing the parent method.
|
|
|
|
import functools
|
|
|
|
import numpy as np
|
|
|
|
import matplotlib.patches as mpatches
|
|
from matplotlib.path import Path
|
|
import matplotlib.axes as maxes
|
|
|
|
from mpl_toolkits.axes_grid1.parasite_axes import host_axes_class_factory
|
|
|
|
from . import axislines, grid_helper_curvelinear
|
|
from .axis_artist import AxisArtist
|
|
from .grid_finder import ExtremeFinderSimple
|
|
|
|
|
|
class FloatingAxisArtistHelper(
|
|
grid_helper_curvelinear.FloatingAxisArtistHelper):
|
|
pass
|
|
|
|
|
|
class FixedAxisArtistHelper(grid_helper_curvelinear.FloatingAxisArtistHelper):
|
|
|
|
def __init__(self, grid_helper, side, nth_coord_ticks=None):
|
|
"""
|
|
nth_coord = along which coordinate value varies.
|
|
nth_coord = 0 -> x axis, nth_coord = 1 -> y axis
|
|
"""
|
|
value, nth_coord = grid_helper.get_data_boundary(side)
|
|
super().__init__(grid_helper, nth_coord, value, axis_direction=side)
|
|
if nth_coord_ticks is None:
|
|
nth_coord_ticks = nth_coord
|
|
self.nth_coord_ticks = nth_coord_ticks
|
|
|
|
self.value = value
|
|
self.grid_helper = grid_helper
|
|
self._side = side
|
|
|
|
def update_lim(self, axes):
|
|
self.grid_helper.update_lim(axes)
|
|
self.grid_info = self.grid_helper.grid_info
|
|
|
|
def get_tick_iterators(self, axes):
|
|
"""tick_loc, tick_angle, tick_label, (optionally) tick_label"""
|
|
|
|
grid_finder = self.grid_helper.grid_finder
|
|
|
|
lat_levs, lat_n, lat_factor = self.grid_info["lat_info"]
|
|
lon_levs, lon_n, lon_factor = self.grid_info["lon_info"]
|
|
|
|
lon_levs, lat_levs = np.asarray(lon_levs), np.asarray(lat_levs)
|
|
if lat_factor is not None:
|
|
yy0 = lat_levs / lat_factor
|
|
dy = 0.001 / lat_factor
|
|
else:
|
|
yy0 = lat_levs
|
|
dy = 0.001
|
|
|
|
if lon_factor is not None:
|
|
xx0 = lon_levs / lon_factor
|
|
dx = 0.001 / lon_factor
|
|
else:
|
|
xx0 = lon_levs
|
|
dx = 0.001
|
|
|
|
extremes = self.grid_helper._extremes
|
|
xmin, xmax = sorted(extremes[:2])
|
|
ymin, ymax = sorted(extremes[2:])
|
|
|
|
def transform_xy(x, y):
|
|
x1, y1 = grid_finder.transform_xy(x, y)
|
|
x2, y2 = axes.transData.transform(np.array([x1, y1]).T).T
|
|
return x2, y2
|
|
|
|
if self.nth_coord == 0:
|
|
mask = (ymin <= yy0) & (yy0 <= ymax)
|
|
yy0 = yy0[mask]
|
|
xx0 = np.full_like(yy0, self.value)
|
|
xx1, yy1 = transform_xy(xx0, yy0)
|
|
|
|
xx00 = xx0.astype(float, copy=True)
|
|
xx00[xx0 + dx > xmax] -= dx
|
|
xx1a, yy1a = transform_xy(xx00, yy0)
|
|
xx1b, yy1b = transform_xy(xx00 + dx, yy0)
|
|
|
|
yy00 = yy0.astype(float, copy=True)
|
|
yy00[yy0 + dy > ymax] -= dy
|
|
xx2a, yy2a = transform_xy(xx0, yy00)
|
|
xx2b, yy2b = transform_xy(xx0, yy00 + dy)
|
|
|
|
labels = self.grid_info["lat_labels"]
|
|
labels = [l for l, m in zip(labels, mask) if m]
|
|
|
|
elif self.nth_coord == 1:
|
|
mask = (xmin <= xx0) & (xx0 <= xmax)
|
|
xx0 = xx0[mask]
|
|
yy0 = np.full_like(xx0, self.value)
|
|
xx1, yy1 = transform_xy(xx0, yy0)
|
|
|
|
yy00 = yy0.astype(float, copy=True)
|
|
yy00[yy0 + dy > ymax] -= dy
|
|
xx1a, yy1a = transform_xy(xx0, yy00)
|
|
xx1b, yy1b = transform_xy(xx0, yy00 + dy)
|
|
|
|
xx00 = xx0.astype(float, copy=True)
|
|
xx00[xx0 + dx > xmax] -= dx
|
|
xx2a, yy2a = transform_xy(xx00, yy0)
|
|
xx2b, yy2b = transform_xy(xx00 + dx, yy0)
|
|
|
|
labels = self.grid_info["lon_labels"]
|
|
labels = [l for l, m in zip(labels, mask) if m]
|
|
|
|
def f1():
|
|
dd = np.arctan2(yy1b - yy1a, xx1b - xx1a) # angle normal
|
|
dd2 = np.arctan2(yy2b - yy2a, xx2b - xx2a) # angle tangent
|
|
mm = (yy1b - yy1a == 0) & (xx1b - xx1a == 0) # mask not defined dd
|
|
dd[mm] = dd2[mm] + np.pi / 2
|
|
|
|
tick_to_axes = self.get_tick_transform(axes) - axes.transAxes
|
|
for x, y, d, d2, lab in zip(xx1, yy1, dd, dd2, labels):
|
|
c2 = tick_to_axes.transform((x, y))
|
|
delta = 0.00001
|
|
if 0-delta <= c2[0] <= 1+delta and 0-delta <= c2[1] <= 1+delta:
|
|
d1, d2 = np.rad2deg([d, d2])
|
|
yield [x, y], d1, d2, lab
|
|
|
|
return f1(), iter([])
|
|
|
|
def get_line(self, axes):
|
|
self.update_lim(axes)
|
|
k, v = dict(left=("lon_lines0", 0),
|
|
right=("lon_lines0", 1),
|
|
bottom=("lat_lines0", 0),
|
|
top=("lat_lines0", 1))[self._side]
|
|
xx, yy = self.grid_info[k][v]
|
|
return Path(np.column_stack([xx, yy]))
|
|
|
|
|
|
class ExtremeFinderFixed(ExtremeFinderSimple):
|
|
# docstring inherited
|
|
|
|
def __init__(self, extremes):
|
|
"""
|
|
This subclass always returns the same bounding box.
|
|
|
|
Parameters
|
|
----------
|
|
extremes : (float, float, float, float)
|
|
The bounding box that this helper always returns.
|
|
"""
|
|
self._extremes = extremes
|
|
|
|
def __call__(self, transform_xy, x1, y1, x2, y2):
|
|
# docstring inherited
|
|
return self._extremes
|
|
|
|
|
|
class GridHelperCurveLinear(grid_helper_curvelinear.GridHelperCurveLinear):
|
|
|
|
def __init__(self, aux_trans, extremes,
|
|
grid_locator1=None,
|
|
grid_locator2=None,
|
|
tick_formatter1=None,
|
|
tick_formatter2=None):
|
|
# docstring inherited
|
|
self._extremes = extremes
|
|
extreme_finder = ExtremeFinderFixed(extremes)
|
|
super().__init__(aux_trans,
|
|
extreme_finder,
|
|
grid_locator1=grid_locator1,
|
|
grid_locator2=grid_locator2,
|
|
tick_formatter1=tick_formatter1,
|
|
tick_formatter2=tick_formatter2)
|
|
|
|
def get_data_boundary(self, side):
|
|
"""
|
|
Return v=0, nth=1.
|
|
"""
|
|
lon1, lon2, lat1, lat2 = self._extremes
|
|
return dict(left=(lon1, 0),
|
|
right=(lon2, 0),
|
|
bottom=(lat1, 1),
|
|
top=(lat2, 1))[side]
|
|
|
|
def new_fixed_axis(self, loc,
|
|
nth_coord=None,
|
|
axis_direction=None,
|
|
offset=None,
|
|
axes=None):
|
|
if axes is None:
|
|
axes = self.axes
|
|
if axis_direction is None:
|
|
axis_direction = loc
|
|
# This is not the same as the FixedAxisArtistHelper class used by
|
|
# grid_helper_curvelinear.GridHelperCurveLinear.new_fixed_axis!
|
|
_helper = FixedAxisArtistHelper(
|
|
self, loc, nth_coord_ticks=nth_coord)
|
|
axisline = AxisArtist(axes, _helper, axis_direction=axis_direction)
|
|
# Perhaps should be moved to the base class?
|
|
axisline.line.set_clip_on(True)
|
|
axisline.line.set_clip_box(axisline.axes.bbox)
|
|
return axisline
|
|
|
|
# new_floating_axis will inherit the grid_helper's extremes.
|
|
|
|
# def new_floating_axis(self, nth_coord,
|
|
# value,
|
|
# axes=None,
|
|
# axis_direction="bottom"
|
|
# ):
|
|
|
|
# axis = super(GridHelperCurveLinear,
|
|
# self).new_floating_axis(nth_coord,
|
|
# value, axes=axes,
|
|
# axis_direction=axis_direction)
|
|
|
|
# # set extreme values of the axis helper
|
|
# if nth_coord == 1:
|
|
# axis.get_helper().set_extremes(*self._extremes[:2])
|
|
# elif nth_coord == 0:
|
|
# axis.get_helper().set_extremes(*self._extremes[2:])
|
|
|
|
# return axis
|
|
|
|
def _update_grid(self, x1, y1, x2, y2):
|
|
if self.grid_info is None:
|
|
self.grid_info = dict()
|
|
|
|
grid_info = self.grid_info
|
|
|
|
grid_finder = self.grid_finder
|
|
extremes = grid_finder.extreme_finder(grid_finder.inv_transform_xy,
|
|
x1, y1, x2, y2)
|
|
|
|
lon_min, lon_max = sorted(extremes[:2])
|
|
lat_min, lat_max = sorted(extremes[2:])
|
|
lon_levs, lon_n, lon_factor = \
|
|
grid_finder.grid_locator1(lon_min, lon_max)
|
|
lat_levs, lat_n, lat_factor = \
|
|
grid_finder.grid_locator2(lat_min, lat_max)
|
|
grid_info["extremes"] = lon_min, lon_max, lat_min, lat_max # extremes
|
|
|
|
grid_info["lon_info"] = lon_levs, lon_n, lon_factor
|
|
grid_info["lat_info"] = lat_levs, lat_n, lat_factor
|
|
|
|
grid_info["lon_labels"] = grid_finder.tick_formatter1("bottom",
|
|
lon_factor,
|
|
lon_levs)
|
|
|
|
grid_info["lat_labels"] = grid_finder.tick_formatter2("bottom",
|
|
lat_factor,
|
|
lat_levs)
|
|
|
|
if lon_factor is None:
|
|
lon_values = np.asarray(lon_levs[:lon_n])
|
|
else:
|
|
lon_values = np.asarray(lon_levs[:lon_n]/lon_factor)
|
|
if lat_factor is None:
|
|
lat_values = np.asarray(lat_levs[:lat_n])
|
|
else:
|
|
lat_values = np.asarray(lat_levs[:lat_n]/lat_factor)
|
|
|
|
lon_lines, lat_lines = grid_finder._get_raw_grid_lines(
|
|
lon_values[(lon_min < lon_values) & (lon_values < lon_max)],
|
|
lat_values[(lat_min < lat_values) & (lat_values < lat_max)],
|
|
lon_min, lon_max, lat_min, lat_max)
|
|
|
|
grid_info["lon_lines"] = lon_lines
|
|
grid_info["lat_lines"] = lat_lines
|
|
|
|
lon_lines, lat_lines = grid_finder._get_raw_grid_lines(
|
|
# lon_min, lon_max, lat_min, lat_max)
|
|
extremes[:2], extremes[2:], *extremes)
|
|
|
|
grid_info["lon_lines0"] = lon_lines
|
|
grid_info["lat_lines0"] = lat_lines
|
|
|
|
def get_gridlines(self, which="major", axis="both"):
|
|
grid_lines = []
|
|
if axis in ["both", "x"]:
|
|
grid_lines.extend(self.grid_info["lon_lines"])
|
|
if axis in ["both", "y"]:
|
|
grid_lines.extend(self.grid_info["lat_lines"])
|
|
return grid_lines
|
|
|
|
def get_boundary(self):
|
|
"""
|
|
Return (N, 2) array of (x, y) coordinate of the boundary.
|
|
"""
|
|
x0, x1, y0, y1 = self._extremes
|
|
tr = self._aux_trans
|
|
|
|
xx = np.linspace(x0, x1, 100)
|
|
yy0 = np.full_like(xx, y0)
|
|
yy1 = np.full_like(xx, y1)
|
|
yy = np.linspace(y0, y1, 100)
|
|
xx0 = np.full_like(yy, x0)
|
|
xx1 = np.full_like(yy, x1)
|
|
|
|
xxx = np.concatenate([xx[:-1], xx1[:-1], xx[-1:0:-1], xx0])
|
|
yyy = np.concatenate([yy0[:-1], yy[:-1], yy1[:-1], yy[::-1]])
|
|
t = tr.transform(np.array([xxx, yyy]).transpose())
|
|
|
|
return t
|
|
|
|
|
|
class FloatingAxesBase:
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
grid_helper = kwargs.get("grid_helper", None)
|
|
if grid_helper is None:
|
|
raise ValueError("FloatingAxes requires grid_helper argument")
|
|
if not hasattr(grid_helper, "get_boundary"):
|
|
raise ValueError("grid_helper must implement get_boundary method")
|
|
|
|
self._axes_class_floating.__init__(self, *args, **kwargs)
|
|
|
|
self.set_aspect(1.)
|
|
self.adjust_axes_lim()
|
|
|
|
def _gen_axes_patch(self):
|
|
# docstring inherited
|
|
grid_helper = self.get_grid_helper()
|
|
t = grid_helper.get_boundary()
|
|
return mpatches.Polygon(t)
|
|
|
|
def cla(self):
|
|
self._axes_class_floating.cla(self)
|
|
# HostAxes.cla(self)
|
|
self.patch.set_transform(self.transData)
|
|
|
|
patch = self._axes_class_floating._gen_axes_patch(self)
|
|
patch.set_figure(self.figure)
|
|
patch.set_visible(False)
|
|
patch.set_transform(self.transAxes)
|
|
|
|
self.patch.set_clip_path(patch)
|
|
self.gridlines.set_clip_path(patch)
|
|
|
|
self._original_patch = patch
|
|
|
|
def adjust_axes_lim(self):
|
|
grid_helper = self.get_grid_helper()
|
|
t = grid_helper.get_boundary()
|
|
x, y = t[:, 0], t[:, 1]
|
|
|
|
xmin, xmax = min(x), max(x)
|
|
ymin, ymax = min(y), max(y)
|
|
|
|
dx = (xmax-xmin) / 100
|
|
dy = (ymax-ymin) / 100
|
|
|
|
self.set_xlim(xmin-dx, xmax+dx)
|
|
self.set_ylim(ymin-dy, ymax+dy)
|
|
|
|
|
|
@functools.lru_cache(None)
|
|
def floatingaxes_class_factory(axes_class):
|
|
return type("Floating %s" % axes_class.__name__,
|
|
(FloatingAxesBase, axes_class),
|
|
{'_axes_class_floating': axes_class})
|
|
|
|
|
|
FloatingAxes = floatingaxes_class_factory(
|
|
host_axes_class_factory(axislines.Axes))
|
|
FloatingSubplot = maxes.subplot_class_factory(FloatingAxes)
|