Vehicle-Anti-Theft-Face-Rec.../venv/Lib/site-packages/Crypto/Hash/CMAC.py

352 lines
12 KiB
Python

# -*- coding: utf-8 -*-
#
# Hash/CMAC.py - Implements the CMAC algorithm
#
# ===================================================================
# The contents of this file are dedicated to the public domain. To
# the extent that dedication to the public domain is not available,
# everyone is granted a worldwide, perpetual, royalty-free,
# non-exclusive license to exercise all rights associated with the
# contents of this file for any purpose whatsoever.
# No rights are reserved.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# ===================================================================
"""CMAC (Cipher-based Message Authentication Code) algorithm
CMAC is a MAC defined in `NIST SP 800-38B`_ and in RFC4493_ (for AES only)
and constructed using a block cipher. It was originally known as `OMAC1`_.
The algorithm is sometimes named *X-CMAC* where *X* is the name
of the cipher (e.g. AES-CMAC).
This is an example showing how to *create* an AES-CMAC:
>>> from Crypto.Hash import CMAC
>>> from Crypto.Cipher import AES
>>>
>>> secret = b'Sixteen byte key'
>>> cobj = CMAC.new(secret, ciphermod=AES)
>>> cobj.update(b'Hello')
>>> print cobj.hexdigest()
And this is an example showing how to *check* an AES-CMAC:
>>> from Crypto.Hash import CMAC
>>> from Crypto.Cipher import AES
>>>
>>> # We have received a message 'msg' together
>>> # with its MAC 'mac'
>>>
>>> secret = b'Sixteen byte key'
>>> cobj = CMAC.new(secret, ciphermod=AES)
>>> cobj.update(msg)
>>> try:
>>> cobj.verify(mac)
>>> print "The message '%s' is authentic" % msg
>>> except ValueError:
>>> print "The message or the key is wrong"
A cipher block size of 128 bits (like for AES) guarantees that the risk
of MAC collisions remains negligeable even when the same CMAC key is
used to authenticate a large amount of data (2^22 Gbytes).
This implementation allows also usage of ciphers with a 64 bits block size
(like TDES) for legacy purposes only.
However, the risk is much higher and one CMAC key should be rotated
after as little as 16 MBytes (in total) have been authenticated.
.. _`NIST SP 800-38B`: http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
.. _RFC4493: http://www.ietf.org/rfc/rfc4493.txt
.. _OMAC1: http://www.nuee.nagoya-u.ac.jp/labs/tiwata/omac/omac.html
"""
from Crypto.Util.py3compat import b, bchr, bord, tobytes
from binascii import unhexlify
from Crypto.Hash import BLAKE2s
from Crypto.Util.strxor import strxor
from Crypto.Util.number import long_to_bytes, bytes_to_long
from Crypto.Random import get_random_bytes
#: The size of the authentication tag produced by the MAC.
digest_size = None
def _shift_bytes(bs, xor_lsb=0):
num = (bytes_to_long(bs) << 1) ^ xor_lsb
return long_to_bytes(num, len(bs))[-len(bs):]
class CMAC(object):
"""Class that implements CMAC"""
#: The size of the authentication tag produced by the MAC.
digest_size = None
def __init__(self, key, msg=None, ciphermod=None, cipher_params=None):
"""Create a new CMAC object.
:Parameters:
key : byte string
secret key for the CMAC object.
The key must be valid for the underlying cipher algorithm.
For instance, it must be 16 bytes long for AES-128.
msg : byte string
The very first chunk of the message to authenticate.
It is equivalent to an early call to `update`. Optional.
ciphermod : module
A cipher module from `Crypto.Cipher`.
The cipher's block size has to be 128 bits.
It is recommended to use `Crypto.Cipher.AES`.
cipher_params : dictionary
Extra keywords to use when creating a new cipher.
"""
if ciphermod is None:
raise TypeError("ciphermod must be specified (try AES)")
self._key = key
self._factory = ciphermod
if cipher_params is None:
self._cipher_params = {}
else:
self._cipher_params = dict(cipher_params)
# Section 5.3 of NIST SP 800 38B and Appendix B
if ciphermod.block_size == 8:
const_Rb = 0x1B
self._max_size = 8 * (2 ** 21)
elif ciphermod.block_size == 16:
const_Rb = 0x87
self._max_size = 16 * (2 ** 48)
else:
raise TypeError("CMAC requires a cipher with a block size"
"of 8 or 16 bytes, not %d" %
(ciphermod.block_size,))
# Size of the final MAC tag, in bytes
self.digest_size = ciphermod.block_size
self._mac_tag = None
# Compute sub-keys
zero_block = bchr(0) * ciphermod.block_size
cipher = ciphermod.new(key,
ciphermod.MODE_ECB,
**self._cipher_params)
l = cipher.encrypt(zero_block)
if bord(l[0]) & 0x80:
self._k1 = _shift_bytes(l, const_Rb)
else:
self._k1 = _shift_bytes(l)
if bord(self._k1[0]) & 0x80:
self._k2 = _shift_bytes(self._k1, const_Rb)
else:
self._k2 = _shift_bytes(self._k1)
# Initialize CBC cipher with zero IV
self._cbc = ciphermod.new(key,
ciphermod.MODE_CBC,
zero_block,
**self._cipher_params)
# Cache for outstanding data to authenticate
self._cache = b("")
# Last two pieces of ciphertext produced
self._last_ct = self._last_pt = zero_block
self._before_last_ct = None
# Counter for total message size
self._data_size = 0
if msg:
self.update(msg)
def update(self, msg):
"""Continue authentication of a message by consuming
the next chunk of data.
Repeated calls are equivalent to a single call with
the concatenation of all the arguments. In other words:
>>> m.update(a); m.update(b)
is equivalent to:
>>> m.update(a+b)
:Parameters:
msg : byte string
The next chunk of the message being authenticated
"""
self._data_size += len(msg)
if len(self._cache) > 0:
filler = min(self.digest_size - len(self._cache), len(msg))
self._cache += msg[:filler]
if len(self._cache) < self.digest_size:
return self
msg = msg[filler:]
self._update(self._cache)
self._cache = b("")
update_len, remain = divmod(len(msg), self.digest_size)
update_len *= self.digest_size
if remain > 0:
self._update(msg[:update_len])
self._cache = msg[update_len:]
else:
self._update(msg)
self._cache = b("")
return self
def _update(self, data_block):
"""Update a block aligned to the block boundary"""
if len(data_block) == 0:
return
assert len(data_block) % self.digest_size == 0
ct = self._cbc.encrypt(data_block)
if len(data_block) == self.digest_size:
self._before_last_ct = self._last_ct
else:
self._before_last_ct = ct[-self.digest_size * 2:-self.digest_size]
self._last_ct = ct[-self.digest_size:]
self._last_pt = data_block[-self.digest_size:]
def copy(self):
"""Return a copy ("clone") of the MAC object.
The copy will have the same internal state as the original MAC
object.
This can be used to efficiently compute the MAC of strings that
share a common initial substring.
:Returns: A `CMAC` object
"""
obj = CMAC(self._key,
ciphermod=self._factory,
cipher_params=self._cipher_params)
obj._cbc = self._factory.new(self._key,
self._factory.MODE_CBC,
self._last_ct,
**self._cipher_params)
for m in ['_mac_tag', '_last_ct', '_before_last_ct', '_cache',
'_data_size', '_max_size']:
setattr(obj, m, getattr(self, m))
return obj
def digest(self):
"""Return the **binary** (non-printable) MAC of the message that has
been authenticated so far.
This method does not change the state of the MAC object.
You can continue updating the object after calling this function.
:Return: A byte string of `digest_size` bytes. It may contain non-ASCII
characters, including null bytes.
"""
if self._mac_tag is not None:
return self._mac_tag
if self._data_size > self._max_size:
raise ValueError("MAC is unsafe for this message")
if len(self._cache) == 0 and self._before_last_ct is not None:
## Last block was full
pt = strxor(strxor(self._before_last_ct, self._k1), self._last_pt)
else:
## Last block is partial (or message length is zero)
ext = self._cache + bchr(0x80) +\
bchr(0) * (self.digest_size - len(self._cache) - 1)
pt = strxor(strxor(self._last_ct, self._k2), ext)
cipher = self._factory.new(self._key,
self._factory.MODE_ECB,
**self._cipher_params)
self._mac_tag = cipher.encrypt(pt)
return self._mac_tag
def hexdigest(self):
"""Return the **printable** MAC of the message that has been
authenticated so far.
This method does not change the state of the MAC object.
:Return: A string of 2* `digest_size` bytes. It contains only
hexadecimal ASCII digits.
"""
return "".join(["%02x" % bord(x)
for x in tuple(self.digest())])
def verify(self, mac_tag):
"""Verify that a given **binary** MAC (computed by another party)
is valid.
:Parameters:
mac_tag : byte string
The expected MAC of the message.
:Raises ValueError:
if the MAC does not match. It means that the message
has been tampered with or that the MAC key is incorrect.
"""
secret = get_random_bytes(16)
mac1 = BLAKE2s.new(digest_bits=160, key=secret, data=mac_tag)
mac2 = BLAKE2s.new(digest_bits=160, key=secret, data=self.digest())
if mac1.digest() != mac2.digest():
raise ValueError("MAC check failed")
def hexverify(self, hex_mac_tag):
"""Verify that a given **printable** MAC (computed by another party)
is valid.
:Parameters:
hex_mac_tag : string
The expected MAC of the message, as a hexadecimal string.
:Raises ValueError:
if the MAC does not match. It means that the message
has been tampered with or that the MAC key is incorrect.
"""
self.verify(unhexlify(tobytes(hex_mac_tag)))
def new(key, msg=None, ciphermod=None, cipher_params=None):
"""Create a new CMAC object.
:Parameters:
key : byte string
secret key for the CMAC object.
The key must be valid for the underlying cipher algorithm.
For instance, it must be 16 bytes long for AES-128.
msg : byte string
The very first chunk of the message to authenticate.
It is equivalent to an early call to `CMAC.update`. Optional.
ciphermod : module
A cipher module from `Crypto.Cipher`.
The cipher's block size has to be 128 bits,
like `Crypto.Cipher.AES`, to reduce the probability of collisions.
:Returns: A `CMAC` object
"""
return CMAC(key, msg, ciphermod, cipher_params)