Vehicle-Anti-Theft-Face-Rec.../venv/Lib/site-packages/sklearn/datasets/tests/test_openml.py

1192 lines
46 KiB
Python

"""Test the openml loader.
"""
import gzip
import json
import numpy as np
import os
import re
import scipy.sparse
import sklearn
import pytest
from sklearn import config_context
from sklearn.datasets import fetch_openml
from sklearn.datasets._openml import (_open_openml_url,
_arff,
_DATA_FILE,
_get_data_description_by_id,
_get_local_path,
_retry_with_clean_cache,
_feature_to_dtype)
from sklearn.utils._testing import (assert_warns_message,
assert_raise_message)
from sklearn.utils import is_scalar_nan
from sklearn.utils._testing import assert_allclose, assert_array_equal
from urllib.error import HTTPError
from sklearn.datasets.tests.test_common import check_return_X_y
from functools import partial
currdir = os.path.dirname(os.path.abspath(__file__))
# if True, urlopen will be monkey patched to only use local files
test_offline = True
def _test_features_list(data_id):
# XXX Test is intended to verify/ensure correct decoding behavior
# Not usable with sparse data or datasets that have columns marked as
# {row_identifier, ignore}
def decode_column(data_bunch, col_idx):
col_name = data_bunch.feature_names[col_idx]
if col_name in data_bunch.categories:
# XXX: This would be faster with np.take, although it does not
# handle missing values fast (also not with mode='wrap')
cat = data_bunch.categories[col_name]
result = [None if is_scalar_nan(idx) else cat[int(idx)]
for idx in data_bunch.data[:, col_idx]]
return np.array(result, dtype='O')
else:
# non-nominal attribute
return data_bunch.data[:, col_idx]
data_bunch = fetch_openml(data_id=data_id, cache=False, target_column=None)
# also obtain decoded arff
data_description = _get_data_description_by_id(data_id, None)
sparse = data_description['format'].lower() == 'sparse_arff'
if sparse is True:
raise ValueError('This test is not intended for sparse data, to keep '
'code relatively simple')
url = _DATA_FILE.format(data_description['file_id'])
with _open_openml_url(url, data_home=None) as f:
data_arff = _arff.load((line.decode('utf-8') for line in f),
return_type=(_arff.COO if sparse
else _arff.DENSE_GEN),
encode_nominal=False)
data_downloaded = np.array(list(data_arff['data']), dtype='O')
for i in range(len(data_bunch.feature_names)):
# XXX: Test per column, as this makes it easier to avoid problems with
# missing values
np.testing.assert_array_equal(data_downloaded[:, i],
decode_column(data_bunch, i))
def _fetch_dataset_from_openml(data_id, data_name, data_version,
target_column,
expected_observations, expected_features,
expected_missing,
expected_data_dtype, expected_target_dtype,
expect_sparse, compare_default_target):
# fetches a dataset in three various ways from OpenML, using the
# fetch_openml function, and does various checks on the validity of the
# result. Note that this function can be mocked (by invoking
# _monkey_patch_webbased_functions before invoking this function)
data_by_name_id = fetch_openml(name=data_name, version=data_version,
cache=False)
assert int(data_by_name_id.details['id']) == data_id
# Please note that cache=False is crucial, as the monkey patched files are
# not consistent with reality
fetch_openml(name=data_name, cache=False)
# without specifying the version, there is no guarantee that the data id
# will be the same
# fetch with dataset id
data_by_id = fetch_openml(data_id=data_id, cache=False,
target_column=target_column)
assert data_by_id.details['name'] == data_name
assert data_by_id.data.shape == (expected_observations, expected_features)
if isinstance(target_column, str):
# single target, so target is vector
assert data_by_id.target.shape == (expected_observations, )
assert data_by_id.target_names == [target_column]
elif isinstance(target_column, list):
# multi target, so target is array
assert data_by_id.target.shape == (expected_observations,
len(target_column))
assert data_by_id.target_names == target_column
assert data_by_id.data.dtype == expected_data_dtype
assert data_by_id.target.dtype == expected_target_dtype
assert len(data_by_id.feature_names) == expected_features
for feature in data_by_id.feature_names:
assert isinstance(feature, str)
# TODO: pass in a list of expected nominal features
for feature, categories in data_by_id.categories.items():
feature_idx = data_by_id.feature_names.index(feature)
values = np.unique(data_by_id.data[:, feature_idx])
values = values[np.isfinite(values)]
assert set(values) <= set(range(len(categories)))
if compare_default_target:
# check whether the data by id and data by id target are equal
data_by_id_default = fetch_openml(data_id=data_id, cache=False)
np.testing.assert_allclose(data_by_id.data, data_by_id_default.data)
if data_by_id.target.dtype == np.float64:
np.testing.assert_allclose(data_by_id.target,
data_by_id_default.target)
else:
assert np.array_equal(data_by_id.target, data_by_id_default.target)
if expect_sparse:
assert isinstance(data_by_id.data, scipy.sparse.csr_matrix)
else:
assert isinstance(data_by_id.data, np.ndarray)
# np.isnan doesn't work on CSR matrix
assert (np.count_nonzero(np.isnan(data_by_id.data)) ==
expected_missing)
# test return_X_y option
fetch_func = partial(fetch_openml, data_id=data_id, cache=False,
target_column=target_column)
check_return_X_y(data_by_id, fetch_func)
return data_by_id
def _monkey_patch_webbased_functions(context,
data_id,
gzip_response):
# monkey patches the urlopen function. Important note: Do NOT use this
# in combination with a regular cache directory, as the files that are
# stored as cache should not be mixed up with real openml datasets
url_prefix_data_description = "https://openml.org/api/v1/json/data/"
url_prefix_data_features = "https://openml.org/api/v1/json/data/features/"
url_prefix_download_data = "https://openml.org/data/v1/"
url_prefix_data_list = "https://openml.org/api/v1/json/data/list/"
path_suffix = '.gz'
read_fn = gzip.open
class MockHTTPResponse:
def __init__(self, data, is_gzip):
self.data = data
self.is_gzip = is_gzip
def read(self, amt=-1):
return self.data.read(amt)
def tell(self):
return self.data.tell()
def seek(self, pos, whence=0):
return self.data.seek(pos, whence)
def close(self):
self.data.close()
def info(self):
if self.is_gzip:
return {'Content-Encoding': 'gzip'}
return {}
def __iter__(self):
return iter(self.data)
def __enter__(self):
return self
def __exit__(self, exc_type, exc_val, exc_tb):
return False
def _file_name(url, suffix):
return (re.sub(r'\W', '-', url[len("https://openml.org/"):])
+ suffix + path_suffix)
def _mock_urlopen_data_description(url, has_gzip_header):
assert url.startswith(url_prefix_data_description)
path = os.path.join(currdir, 'data', 'openml', str(data_id),
_file_name(url, '.json'))
if has_gzip_header and gzip_response:
fp = open(path, 'rb')
return MockHTTPResponse(fp, True)
else:
fp = read_fn(path, 'rb')
return MockHTTPResponse(fp, False)
def _mock_urlopen_data_features(url, has_gzip_header):
assert url.startswith(url_prefix_data_features)
path = os.path.join(currdir, 'data', 'openml', str(data_id),
_file_name(url, '.json'))
if has_gzip_header and gzip_response:
fp = open(path, 'rb')
return MockHTTPResponse(fp, True)
else:
fp = read_fn(path, 'rb')
return MockHTTPResponse(fp, False)
def _mock_urlopen_download_data(url, has_gzip_header):
assert (url.startswith(url_prefix_download_data))
path = os.path.join(currdir, 'data', 'openml', str(data_id),
_file_name(url, '.arff'))
if has_gzip_header and gzip_response:
fp = open(path, 'rb')
return MockHTTPResponse(fp, True)
else:
fp = read_fn(path, 'rb')
return MockHTTPResponse(fp, False)
def _mock_urlopen_data_list(url, has_gzip_header):
assert url.startswith(url_prefix_data_list)
json_file_path = os.path.join(currdir, 'data', 'openml',
str(data_id), _file_name(url, '.json'))
# load the file itself, to simulate a http error
json_data = json.loads(read_fn(json_file_path, 'rb').
read().decode('utf-8'))
if 'error' in json_data:
raise HTTPError(url=None, code=412,
msg='Simulated mock error',
hdrs=None, fp=None)
if has_gzip_header:
fp = open(json_file_path, 'rb')
return MockHTTPResponse(fp, True)
else:
fp = read_fn(json_file_path, 'rb')
return MockHTTPResponse(fp, False)
def _mock_urlopen(request):
url = request.get_full_url()
has_gzip_header = request.get_header('Accept-encoding') == "gzip"
if url.startswith(url_prefix_data_list):
return _mock_urlopen_data_list(url, has_gzip_header)
elif url.startswith(url_prefix_data_features):
return _mock_urlopen_data_features(url, has_gzip_header)
elif url.startswith(url_prefix_download_data):
return _mock_urlopen_download_data(url, has_gzip_header)
elif url.startswith(url_prefix_data_description):
return _mock_urlopen_data_description(url, has_gzip_header)
else:
raise ValueError('Unknown mocking URL pattern: %s' % url)
# XXX: Global variable
if test_offline:
context.setattr(sklearn.datasets._openml, 'urlopen', _mock_urlopen)
@pytest.mark.parametrize('feature, expected_dtype', [
({'data_type': 'string', 'number_of_missing_values': '0'}, object),
({'data_type': 'string', 'number_of_missing_values': '1'}, object),
({'data_type': 'numeric', 'number_of_missing_values': '0'}, np.float64),
({'data_type': 'numeric', 'number_of_missing_values': '1'}, np.float64),
({'data_type': 'real', 'number_of_missing_values': '0'}, np.float64),
({'data_type': 'real', 'number_of_missing_values': '1'}, np.float64),
({'data_type': 'integer', 'number_of_missing_values': '0'}, np.int64),
({'data_type': 'integer', 'number_of_missing_values': '1'}, np.float64),
({'data_type': 'nominal', 'number_of_missing_values': '0'}, 'category'),
({'data_type': 'nominal', 'number_of_missing_values': '1'}, 'category'),
])
def test_feature_to_dtype(feature, expected_dtype):
assert _feature_to_dtype(feature) == expected_dtype
@pytest.mark.parametrize('feature', [
{'data_type': 'datatime', 'number_of_missing_values': '0'}
])
def test_feature_to_dtype_error(feature):
msg = 'Unsupported feature: {}'.format(feature)
with pytest.raises(ValueError, match=msg):
_feature_to_dtype(feature)
def test_fetch_openml_iris_pandas(monkeypatch):
# classification dataset with numeric only columns
pd = pytest.importorskip('pandas')
CategoricalDtype = pd.api.types.CategoricalDtype
data_id = 61
data_shape = (150, 4)
target_shape = (150, )
frame_shape = (150, 5)
target_dtype = CategoricalDtype(['Iris-setosa', 'Iris-versicolor',
'Iris-virginica'])
data_dtypes = [np.float64] * 4
data_names = ['sepallength', 'sepalwidth', 'petallength', 'petalwidth']
target_name = 'class'
_monkey_patch_webbased_functions(monkeypatch, data_id, True)
bunch = fetch_openml(data_id=data_id, as_frame=True, cache=False)
data = bunch.data
target = bunch.target
frame = bunch.frame
assert isinstance(data, pd.DataFrame)
assert np.all(data.dtypes == data_dtypes)
assert data.shape == data_shape
assert np.all(data.columns == data_names)
assert np.all(bunch.feature_names == data_names)
assert bunch.target_names == [target_name]
assert isinstance(target, pd.Series)
assert target.dtype == target_dtype
assert target.shape == target_shape
assert target.name == target_name
assert target.index.is_unique
assert isinstance(frame, pd.DataFrame)
assert frame.shape == frame_shape
assert np.all(frame.dtypes == data_dtypes + [target_dtype])
assert frame.index.is_unique
def test_fetch_openml_iris_pandas_equal_to_no_frame(monkeypatch):
# as_frame = True returns the same underlying data as as_frame = False
pytest.importorskip('pandas')
data_id = 61
_monkey_patch_webbased_functions(monkeypatch, data_id, True)
frame_bunch = fetch_openml(data_id=data_id, as_frame=True, cache=False)
frame_data = frame_bunch.data
frame_target = frame_bunch.target
norm_bunch = fetch_openml(data_id=data_id, as_frame=False, cache=False)
norm_data = norm_bunch.data
norm_target = norm_bunch.target
assert_allclose(norm_data, frame_data)
assert_array_equal(norm_target, frame_target)
def test_fetch_openml_iris_multitarget_pandas(monkeypatch):
# classification dataset with numeric only columns
pd = pytest.importorskip('pandas')
CategoricalDtype = pd.api.types.CategoricalDtype
data_id = 61
data_shape = (150, 3)
target_shape = (150, 2)
frame_shape = (150, 5)
target_column = ['petalwidth', 'petallength']
cat_dtype = CategoricalDtype(['Iris-setosa', 'Iris-versicolor',
'Iris-virginica'])
data_dtypes = [np.float64, np.float64] + [cat_dtype]
data_names = ['sepallength', 'sepalwidth', 'class']
target_dtypes = [np.float64, np.float64]
target_names = ['petalwidth', 'petallength']
_monkey_patch_webbased_functions(monkeypatch, data_id, True)
bunch = fetch_openml(data_id=data_id, as_frame=True, cache=False,
target_column=target_column)
data = bunch.data
target = bunch.target
frame = bunch.frame
assert isinstance(data, pd.DataFrame)
assert np.all(data.dtypes == data_dtypes)
assert data.shape == data_shape
assert np.all(data.columns == data_names)
assert np.all(bunch.feature_names == data_names)
assert bunch.target_names == target_names
assert isinstance(target, pd.DataFrame)
assert np.all(target.dtypes == target_dtypes)
assert target.shape == target_shape
assert np.all(target.columns == target_names)
assert isinstance(frame, pd.DataFrame)
assert frame.shape == frame_shape
assert np.all(frame.dtypes == [np.float64] * 4 + [cat_dtype])
def test_fetch_openml_anneal_pandas(monkeypatch):
# classification dataset with numeric and categorical columns
pd = pytest.importorskip('pandas')
CategoricalDtype = pd.api.types.CategoricalDtype
data_id = 2
target_column = 'class'
data_shape = (11, 38)
target_shape = (11,)
frame_shape = (11, 39)
expected_data_categories = 32
expected_data_floats = 6
_monkey_patch_webbased_functions(monkeypatch, data_id, True)
bunch = fetch_openml(data_id=data_id, as_frame=True,
target_column=target_column, cache=False)
data = bunch.data
target = bunch.target
frame = bunch.frame
assert isinstance(data, pd.DataFrame)
assert data.shape == data_shape
n_categories = len([dtype for dtype in data.dtypes
if isinstance(dtype, CategoricalDtype)])
n_floats = len([dtype for dtype in data.dtypes if dtype.kind == 'f'])
assert expected_data_categories == n_categories
assert expected_data_floats == n_floats
assert isinstance(target, pd.Series)
assert target.shape == target_shape
assert isinstance(target.dtype, CategoricalDtype)
assert isinstance(frame, pd.DataFrame)
assert frame.shape == frame_shape
def test_fetch_openml_cpu_pandas(monkeypatch):
# regression dataset with numeric and categorical columns
pd = pytest.importorskip('pandas')
CategoricalDtype = pd.api.types.CategoricalDtype
data_id = 561
data_shape = (209, 7)
target_shape = (209, )
frame_shape = (209, 8)
cat_dtype = CategoricalDtype(['adviser', 'amdahl', 'apollo', 'basf',
'bti', 'burroughs', 'c.r.d', 'cdc',
'cambex', 'dec', 'dg', 'formation',
'four-phase', 'gould', 'hp', 'harris',
'honeywell', 'ibm', 'ipl', 'magnuson',
'microdata', 'nas', 'ncr', 'nixdorf',
'perkin-elmer', 'prime', 'siemens',
'sperry', 'sratus', 'wang'])
data_dtypes = [cat_dtype] + [np.float64] * 6
feature_names = ['vendor', 'MYCT', 'MMIN', 'MMAX', 'CACH',
'CHMIN', 'CHMAX']
target_name = 'class'
_monkey_patch_webbased_functions(monkeypatch, data_id, True)
bunch = fetch_openml(data_id=data_id, as_frame=True, cache=False)
data = bunch.data
target = bunch.target
frame = bunch.frame
assert isinstance(data, pd.DataFrame)
assert data.shape == data_shape
assert np.all(data.dtypes == data_dtypes)
assert np.all(data.columns == feature_names)
assert np.all(bunch.feature_names == feature_names)
assert bunch.target_names == [target_name]
assert isinstance(target, pd.Series)
assert target.shape == target_shape
assert target.dtype == np.float64
assert target.name == target_name
assert isinstance(frame, pd.DataFrame)
assert frame.shape == frame_shape
def test_fetch_openml_australian_pandas_error_sparse(monkeypatch):
data_id = 292
_monkey_patch_webbased_functions(monkeypatch, data_id, True)
msg = 'Cannot return dataframe with sparse data'
with pytest.raises(ValueError, match=msg):
fetch_openml(data_id=data_id, as_frame=True, cache=False)
def test_convert_arff_data_dataframe_warning_low_memory_pandas(monkeypatch):
pytest.importorskip('pandas')
data_id = 1119
_monkey_patch_webbased_functions(monkeypatch, data_id, True)
msg = 'Could not adhere to working_memory config.'
with pytest.warns(UserWarning, match=msg):
with config_context(working_memory=1e-6):
fetch_openml(data_id=data_id, as_frame=True, cache=False)
def test_fetch_openml_adultcensus_pandas_return_X_y(monkeypatch):
pd = pytest.importorskip('pandas')
CategoricalDtype = pd.api.types.CategoricalDtype
data_id = 1119
data_shape = (10, 14)
target_shape = (10, )
expected_data_categories = 8
expected_data_floats = 6
target_column = 'class'
_monkey_patch_webbased_functions(monkeypatch, data_id, True)
X, y = fetch_openml(data_id=data_id, as_frame=True, cache=False,
return_X_y=True)
assert isinstance(X, pd.DataFrame)
assert X.shape == data_shape
n_categories = len([dtype for dtype in X.dtypes
if isinstance(dtype, CategoricalDtype)])
n_floats = len([dtype for dtype in X.dtypes if dtype.kind == 'f'])
assert expected_data_categories == n_categories
assert expected_data_floats == n_floats
assert isinstance(y, pd.Series)
assert y.shape == target_shape
assert y.name == target_column
def test_fetch_openml_adultcensus_pandas(monkeypatch):
pd = pytest.importorskip('pandas')
CategoricalDtype = pd.api.types.CategoricalDtype
# Check because of the numeric row attribute (issue #12329)
data_id = 1119
data_shape = (10, 14)
target_shape = (10, )
frame_shape = (10, 15)
expected_data_categories = 8
expected_data_floats = 6
target_column = 'class'
_monkey_patch_webbased_functions(monkeypatch, data_id, True)
bunch = fetch_openml(data_id=data_id, as_frame=True, cache=False)
data = bunch.data
target = bunch.target
frame = bunch.frame
assert isinstance(data, pd.DataFrame)
assert data.shape == data_shape
n_categories = len([dtype for dtype in data.dtypes
if isinstance(dtype, CategoricalDtype)])
n_floats = len([dtype for dtype in data.dtypes if dtype.kind == 'f'])
assert expected_data_categories == n_categories
assert expected_data_floats == n_floats
assert isinstance(target, pd.Series)
assert target.shape == target_shape
assert target.name == target_column
assert isinstance(frame, pd.DataFrame)
assert frame.shape == frame_shape
def test_fetch_openml_miceprotein_pandas(monkeypatch):
# JvR: very important check, as this dataset defined several row ids
# and ignore attributes. Note that data_features json has 82 attributes,
# and row id (1), ignore attributes (3) have been removed.
pd = pytest.importorskip('pandas')
CategoricalDtype = pd.api.types.CategoricalDtype
data_id = 40966
data_shape = (7, 77)
target_shape = (7, )
frame_shape = (7, 78)
target_column = 'class'
frame_n_categories = 1
frame_n_floats = 77
_monkey_patch_webbased_functions(monkeypatch, data_id, True)
bunch = fetch_openml(data_id=data_id, as_frame=True, cache=False)
data = bunch.data
target = bunch.target
frame = bunch.frame
assert isinstance(data, pd.DataFrame)
assert data.shape == data_shape
assert np.all(data.dtypes == np.float64)
assert isinstance(target, pd.Series)
assert isinstance(target.dtype, CategoricalDtype)
assert target.shape == target_shape
assert target.name == target_column
assert isinstance(frame, pd.DataFrame)
assert frame.shape == frame_shape
n_categories = len([dtype for dtype in frame.dtypes
if isinstance(dtype, CategoricalDtype)])
n_floats = len([dtype for dtype in frame.dtypes if dtype.kind == 'f'])
assert frame_n_categories == n_categories
assert frame_n_floats == n_floats
def test_fetch_openml_emotions_pandas(monkeypatch):
# classification dataset with multiple targets (natively)
pd = pytest.importorskip('pandas')
CategoricalDtype = pd.api.types.CategoricalDtype
data_id = 40589
target_column = ['amazed.suprised', 'happy.pleased', 'relaxing.calm',
'quiet.still', 'sad.lonely', 'angry.aggresive']
data_shape = (13, 72)
target_shape = (13, 6)
frame_shape = (13, 78)
expected_frame_categories = 6
expected_frame_floats = 72
_monkey_patch_webbased_functions(monkeypatch, data_id, True)
bunch = fetch_openml(data_id=data_id, as_frame=True, cache=False,
target_column=target_column)
data = bunch.data
target = bunch.target
frame = bunch.frame
assert isinstance(data, pd.DataFrame)
assert data.shape == data_shape
assert isinstance(target, pd.DataFrame)
assert target.shape == target_shape
assert np.all(target.columns == target_column)
assert isinstance(frame, pd.DataFrame)
assert frame.shape == frame_shape
n_categories = len([dtype for dtype in frame.dtypes
if isinstance(dtype, CategoricalDtype)])
n_floats = len([dtype for dtype in frame.dtypes if dtype.kind == 'f'])
assert expected_frame_categories == n_categories
assert expected_frame_floats == n_floats
def test_fetch_openml_titanic_pandas(monkeypatch):
# dataset with strings
pd = pytest.importorskip('pandas')
CategoricalDtype = pd.api.types.CategoricalDtype
data_id = 40945
data_shape = (1309, 13)
target_shape = (1309, )
frame_shape = (1309, 14)
name_to_dtype = {
'pclass': np.float64,
'name': object,
'sex': CategoricalDtype(['female', 'male']),
'age': np.float64,
'sibsp': np.float64,
'parch': np.float64,
'ticket': object,
'fare': np.float64,
'cabin': object,
'embarked': CategoricalDtype(['C', 'Q', 'S']),
'boat': object,
'body': np.float64,
'home.dest': object,
'survived': CategoricalDtype(['0', '1'])
}
frame_columns = ['pclass', 'survived', 'name', 'sex', 'age', 'sibsp',
'parch', 'ticket', 'fare', 'cabin', 'embarked',
'boat', 'body', 'home.dest']
frame_dtypes = [name_to_dtype[col] for col in frame_columns]
feature_names = ['pclass', 'name', 'sex', 'age', 'sibsp',
'parch', 'ticket', 'fare', 'cabin', 'embarked',
'boat', 'body', 'home.dest']
target_name = 'survived'
_monkey_patch_webbased_functions(monkeypatch, data_id, True)
bunch = fetch_openml(data_id=data_id, as_frame=True, cache=False)
data = bunch.data
target = bunch.target
frame = bunch.frame
assert isinstance(data, pd.DataFrame)
assert data.shape == data_shape
assert np.all(data.columns == feature_names)
assert bunch.target_names == [target_name]
assert isinstance(target, pd.Series)
assert target.shape == target_shape
assert target.name == target_name
assert target.dtype == name_to_dtype[target_name]
assert isinstance(frame, pd.DataFrame)
assert frame.shape == frame_shape
assert np.all(frame.dtypes == frame_dtypes)
@pytest.mark.parametrize('gzip_response', [True, False])
def test_fetch_openml_iris(monkeypatch, gzip_response):
# classification dataset with numeric only columns
data_id = 61
data_name = 'iris'
data_version = 1
target_column = 'class'
expected_observations = 150
expected_features = 4
expected_missing = 0
_monkey_patch_webbased_functions(monkeypatch, data_id, gzip_response)
assert_warns_message(
UserWarning,
"Multiple active versions of the dataset matching the name"
" iris exist. Versions may be fundamentally different, "
"returning version 1.",
_fetch_dataset_from_openml,
**{'data_id': data_id, 'data_name': data_name,
'data_version': data_version,
'target_column': target_column,
'expected_observations': expected_observations,
'expected_features': expected_features,
'expected_missing': expected_missing,
'expect_sparse': False,
'expected_data_dtype': np.float64,
'expected_target_dtype': object,
'compare_default_target': True}
)
def test_decode_iris(monkeypatch):
data_id = 61
_monkey_patch_webbased_functions(monkeypatch, data_id, False)
_test_features_list(data_id)
@pytest.mark.parametrize('gzip_response', [True, False])
def test_fetch_openml_iris_multitarget(monkeypatch, gzip_response):
# classification dataset with numeric only columns
data_id = 61
data_name = 'iris'
data_version = 1
target_column = ['sepallength', 'sepalwidth']
expected_observations = 150
expected_features = 3
expected_missing = 0
_monkey_patch_webbased_functions(monkeypatch, data_id, gzip_response)
_fetch_dataset_from_openml(data_id, data_name, data_version, target_column,
expected_observations, expected_features,
expected_missing,
np.float64, np.float64, expect_sparse=False,
compare_default_target=False)
@pytest.mark.parametrize('gzip_response', [True, False])
def test_fetch_openml_anneal(monkeypatch, gzip_response):
# classification dataset with numeric and categorical columns
data_id = 2
data_name = 'anneal'
data_version = 1
target_column = 'class'
# Not all original instances included for space reasons
expected_observations = 11
expected_features = 38
expected_missing = 267
_monkey_patch_webbased_functions(monkeypatch, data_id, gzip_response)
_fetch_dataset_from_openml(data_id, data_name, data_version, target_column,
expected_observations, expected_features,
expected_missing,
np.float64, object, expect_sparse=False,
compare_default_target=True)
def test_decode_anneal(monkeypatch):
data_id = 2
_monkey_patch_webbased_functions(monkeypatch, data_id, False)
_test_features_list(data_id)
@pytest.mark.parametrize('gzip_response', [True, False])
def test_fetch_openml_anneal_multitarget(monkeypatch, gzip_response):
# classification dataset with numeric and categorical columns
data_id = 2
data_name = 'anneal'
data_version = 1
target_column = ['class', 'product-type', 'shape']
# Not all original instances included for space reasons
expected_observations = 11
expected_features = 36
expected_missing = 267
_monkey_patch_webbased_functions(monkeypatch, data_id, gzip_response)
_fetch_dataset_from_openml(data_id, data_name, data_version, target_column,
expected_observations, expected_features,
expected_missing,
np.float64, object, expect_sparse=False,
compare_default_target=False)
@pytest.mark.parametrize('gzip_response', [True, False])
def test_fetch_openml_cpu(monkeypatch, gzip_response):
# regression dataset with numeric and categorical columns
data_id = 561
data_name = 'cpu'
data_version = 1
target_column = 'class'
expected_observations = 209
expected_features = 7
expected_missing = 0
_monkey_patch_webbased_functions(monkeypatch, data_id, gzip_response)
_fetch_dataset_from_openml(data_id, data_name, data_version, target_column,
expected_observations, expected_features,
expected_missing,
np.float64, np.float64, expect_sparse=False,
compare_default_target=True)
def test_decode_cpu(monkeypatch):
data_id = 561
_monkey_patch_webbased_functions(monkeypatch, data_id, False)
_test_features_list(data_id)
@pytest.mark.parametrize('gzip_response', [True, False])
def test_fetch_openml_australian(monkeypatch, gzip_response):
# sparse dataset
# Australian is the only sparse dataset that is reasonably small
# as it is inactive, we need to catch the warning. Due to mocking
# framework, it is not deactivated in our tests
data_id = 292
data_name = 'Australian'
data_version = 1
target_column = 'Y'
# Not all original instances included for space reasons
expected_observations = 85
expected_features = 14
expected_missing = 0
_monkey_patch_webbased_functions(monkeypatch, data_id, gzip_response)
assert_warns_message(
UserWarning,
"Version 1 of dataset Australian is inactive,",
_fetch_dataset_from_openml,
**{'data_id': data_id, 'data_name': data_name,
'data_version': data_version,
'target_column': target_column,
'expected_observations': expected_observations,
'expected_features': expected_features,
'expected_missing': expected_missing,
'expect_sparse': True,
'expected_data_dtype': np.float64,
'expected_target_dtype': object,
'compare_default_target': False} # numpy specific check
)
@pytest.mark.parametrize('gzip_response', [True, False])
def test_fetch_openml_adultcensus(monkeypatch, gzip_response):
# Check because of the numeric row attribute (issue #12329)
data_id = 1119
data_name = 'adult-census'
data_version = 1
target_column = 'class'
# Not all original instances included for space reasons
expected_observations = 10
expected_features = 14
expected_missing = 0
_monkey_patch_webbased_functions(monkeypatch, data_id, gzip_response)
_fetch_dataset_from_openml(data_id, data_name, data_version, target_column,
expected_observations, expected_features,
expected_missing,
np.float64, object, expect_sparse=False,
compare_default_target=True)
@pytest.mark.parametrize('gzip_response', [True, False])
def test_fetch_openml_miceprotein(monkeypatch, gzip_response):
# JvR: very important check, as this dataset defined several row ids
# and ignore attributes. Note that data_features json has 82 attributes,
# and row id (1), ignore attributes (3) have been removed (and target is
# stored in data.target)
data_id = 40966
data_name = 'MiceProtein'
data_version = 4
target_column = 'class'
# Not all original instances included for space reasons
expected_observations = 7
expected_features = 77
expected_missing = 7
_monkey_patch_webbased_functions(monkeypatch, data_id, gzip_response)
_fetch_dataset_from_openml(data_id, data_name, data_version, target_column,
expected_observations, expected_features,
expected_missing,
np.float64, object, expect_sparse=False,
compare_default_target=True)
@pytest.mark.parametrize('gzip_response', [True, False])
def test_fetch_openml_emotions(monkeypatch, gzip_response):
# classification dataset with multiple targets (natively)
data_id = 40589
data_name = 'emotions'
data_version = 3
target_column = ['amazed.suprised', 'happy.pleased', 'relaxing.calm',
'quiet.still', 'sad.lonely', 'angry.aggresive']
expected_observations = 13
expected_features = 72
expected_missing = 0
_monkey_patch_webbased_functions(monkeypatch, data_id, gzip_response)
_fetch_dataset_from_openml(data_id, data_name, data_version, target_column,
expected_observations, expected_features,
expected_missing,
np.float64, object, expect_sparse=False,
compare_default_target=True)
def test_decode_emotions(monkeypatch):
data_id = 40589
_monkey_patch_webbased_functions(monkeypatch, data_id, False)
_test_features_list(data_id)
@pytest.mark.parametrize('gzip_response', [True, False])
def test_open_openml_url_cache(monkeypatch, gzip_response, tmpdir):
data_id = 61
_monkey_patch_webbased_functions(
monkeypatch, data_id, gzip_response)
openml_path = sklearn.datasets._openml._DATA_FILE.format(data_id)
cache_directory = str(tmpdir.mkdir('scikit_learn_data'))
# first fill the cache
response1 = _open_openml_url(openml_path, cache_directory)
# assert file exists
location = _get_local_path(openml_path, cache_directory)
assert os.path.isfile(location)
# redownload, to utilize cache
response2 = _open_openml_url(openml_path, cache_directory)
assert response1.read() == response2.read()
@pytest.mark.parametrize('gzip_response', [True, False])
@pytest.mark.parametrize('write_to_disk', [True, False])
def test_open_openml_url_unlinks_local_path(
monkeypatch, gzip_response, tmpdir, write_to_disk):
data_id = 61
openml_path = sklearn.datasets._openml._DATA_FILE.format(data_id)
cache_directory = str(tmpdir.mkdir('scikit_learn_data'))
location = _get_local_path(openml_path, cache_directory)
def _mock_urlopen(request):
if write_to_disk:
with open(location, "w") as f:
f.write("")
raise ValueError("Invalid request")
monkeypatch.setattr(sklearn.datasets._openml, 'urlopen', _mock_urlopen)
with pytest.raises(ValueError, match="Invalid request"):
_open_openml_url(openml_path, cache_directory)
assert not os.path.exists(location)
def test_retry_with_clean_cache(tmpdir):
data_id = 61
openml_path = sklearn.datasets._openml._DATA_FILE.format(data_id)
cache_directory = str(tmpdir.mkdir('scikit_learn_data'))
location = _get_local_path(openml_path, cache_directory)
os.makedirs(os.path.dirname(location))
with open(location, 'w') as f:
f.write("")
@_retry_with_clean_cache(openml_path, cache_directory)
def _load_data():
# The first call will raise an error since location exists
if os.path.exists(location):
raise Exception("File exist!")
return 1
warn_msg = "Invalid cache, redownloading file"
with pytest.warns(RuntimeWarning, match=warn_msg):
result = _load_data()
assert result == 1
def test_retry_with_clean_cache_http_error(tmpdir):
data_id = 61
openml_path = sklearn.datasets._openml._DATA_FILE.format(data_id)
cache_directory = str(tmpdir.mkdir('scikit_learn_data'))
@_retry_with_clean_cache(openml_path, cache_directory)
def _load_data():
raise HTTPError(url=None, code=412,
msg='Simulated mock error',
hdrs=None, fp=None)
error_msg = "Simulated mock error"
with pytest.raises(HTTPError, match=error_msg):
_load_data()
@pytest.mark.parametrize('gzip_response', [True, False])
def test_fetch_openml_cache(monkeypatch, gzip_response, tmpdir):
def _mock_urlopen_raise(request):
raise ValueError('This mechanism intends to test correct cache'
'handling. As such, urlopen should never be '
'accessed. URL: %s' % request.get_full_url())
data_id = 2
cache_directory = str(tmpdir.mkdir('scikit_learn_data'))
_monkey_patch_webbased_functions(
monkeypatch, data_id, gzip_response)
X_fetched, y_fetched = fetch_openml(data_id=data_id, cache=True,
data_home=cache_directory,
return_X_y=True)
monkeypatch.setattr(sklearn.datasets._openml, 'urlopen',
_mock_urlopen_raise)
X_cached, y_cached = fetch_openml(data_id=data_id, cache=True,
data_home=cache_directory,
return_X_y=True)
np.testing.assert_array_equal(X_fetched, X_cached)
np.testing.assert_array_equal(y_fetched, y_cached)
@pytest.mark.parametrize('gzip_response', [True, False])
def test_fetch_openml_notarget(monkeypatch, gzip_response):
data_id = 61
target_column = None
expected_observations = 150
expected_features = 5
_monkey_patch_webbased_functions(monkeypatch, data_id, gzip_response)
data = fetch_openml(data_id=data_id, target_column=target_column,
cache=False)
assert data.data.shape == (expected_observations, expected_features)
assert data.target is None
@pytest.mark.parametrize('gzip_response', [True, False])
def test_fetch_openml_inactive(monkeypatch, gzip_response):
# fetch inactive dataset by id
data_id = 40675
_monkey_patch_webbased_functions(monkeypatch, data_id, gzip_response)
glas2 = assert_warns_message(
UserWarning, "Version 1 of dataset glass2 is inactive,", fetch_openml,
data_id=data_id, cache=False)
# fetch inactive dataset by name and version
assert glas2.data.shape == (163, 9)
glas2_by_version = assert_warns_message(
UserWarning, "Version 1 of dataset glass2 is inactive,", fetch_openml,
data_id=None, name="glass2", version=1, cache=False)
assert int(glas2_by_version.details['id']) == data_id
@pytest.mark.parametrize('gzip_response', [True, False])
def test_fetch_nonexiting(monkeypatch, gzip_response):
# there is no active version of glass2
data_id = 40675
_monkey_patch_webbased_functions(monkeypatch, data_id, gzip_response)
# Note that we only want to search by name (not data id)
assert_raise_message(ValueError, "No active dataset glass2 found",
fetch_openml, name='glass2', cache=False)
@pytest.mark.parametrize('gzip_response', [True, False])
def test_raises_illegal_multitarget(monkeypatch, gzip_response):
data_id = 61
targets = ['sepalwidth', 'class']
_monkey_patch_webbased_functions(monkeypatch, data_id, gzip_response)
# Note that we only want to search by name (not data id)
assert_raise_message(ValueError,
"Can only handle homogeneous multi-target datasets,",
fetch_openml, data_id=data_id,
target_column=targets, cache=False)
@pytest.mark.parametrize('gzip_response', [True, False])
def test_warn_ignore_attribute(monkeypatch, gzip_response):
data_id = 40966
expected_row_id_msg = "target_column={} has flag is_row_identifier."
expected_ignore_msg = "target_column={} has flag is_ignore."
_monkey_patch_webbased_functions(monkeypatch, data_id, gzip_response)
# single column test
assert_warns_message(UserWarning, expected_row_id_msg.format('MouseID'),
fetch_openml, data_id=data_id,
target_column='MouseID',
cache=False)
assert_warns_message(UserWarning, expected_ignore_msg.format('Genotype'),
fetch_openml, data_id=data_id,
target_column='Genotype',
cache=False)
# multi column test
assert_warns_message(UserWarning, expected_row_id_msg.format('MouseID'),
fetch_openml, data_id=data_id,
target_column=['MouseID', 'class'],
cache=False)
assert_warns_message(UserWarning, expected_ignore_msg.format('Genotype'),
fetch_openml, data_id=data_id,
target_column=['Genotype', 'class'],
cache=False)
@pytest.mark.parametrize('gzip_response', [True, False])
def test_string_attribute_without_dataframe(monkeypatch, gzip_response):
data_id = 40945
_monkey_patch_webbased_functions(monkeypatch, data_id, gzip_response)
# single column test
assert_raise_message(ValueError,
('STRING attributes are not supported for '
'array representation. Try as_frame=True'),
fetch_openml, data_id=data_id, cache=False)
@pytest.mark.parametrize('gzip_response', [True, False])
def test_dataset_with_openml_error(monkeypatch, gzip_response):
data_id = 1
_monkey_patch_webbased_functions(monkeypatch, data_id, gzip_response)
assert_warns_message(
UserWarning,
"OpenML registered a problem with the dataset. It might be unusable. "
"Error:",
fetch_openml, data_id=data_id, cache=False
)
@pytest.mark.parametrize('gzip_response', [True, False])
def test_dataset_with_openml_warning(monkeypatch, gzip_response):
data_id = 3
_monkey_patch_webbased_functions(monkeypatch, data_id, gzip_response)
assert_warns_message(
UserWarning,
"OpenML raised a warning on the dataset. It might be unusable. "
"Warning:",
fetch_openml, data_id=data_id, cache=False
)
@pytest.mark.parametrize('gzip_response', [True, False])
def test_illegal_column(monkeypatch, gzip_response):
data_id = 61
_monkey_patch_webbased_functions(monkeypatch, data_id, gzip_response)
assert_raise_message(KeyError, "Could not find target_column=",
fetch_openml, data_id=data_id,
target_column='undefined', cache=False)
assert_raise_message(KeyError, "Could not find target_column=",
fetch_openml, data_id=data_id,
target_column=['undefined', 'class'],
cache=False)
@pytest.mark.parametrize('gzip_response', [True, False])
def test_fetch_openml_raises_missing_values_target(monkeypatch, gzip_response):
data_id = 2
_monkey_patch_webbased_functions(monkeypatch, data_id, gzip_response)
assert_raise_message(ValueError, "Target column ",
fetch_openml, data_id=data_id, target_column='family')
def test_fetch_openml_raises_illegal_argument():
assert_raise_message(ValueError, "Dataset data_id=",
fetch_openml, data_id=-1, name="name")
assert_raise_message(ValueError, "Dataset data_id=",
fetch_openml, data_id=-1, name=None,
version="version")
assert_raise_message(ValueError, "Dataset data_id=",
fetch_openml, data_id=-1, name="name",
version="version")
assert_raise_message(ValueError, "Neither name nor data_id are provided. "
"Please provide name or data_id.", fetch_openml)
@pytest.mark.parametrize('gzip_response', [True, False])
def test_fetch_openml_with_ignored_feature(monkeypatch, gzip_response):
# Regression test for #14340
# 62 is the ID of the ZOO dataset
data_id = 62
_monkey_patch_webbased_functions(monkeypatch, data_id, gzip_response)
dataset = sklearn.datasets.fetch_openml(data_id=data_id, cache=False)
assert dataset is not None
# The dataset has 17 features, including 1 ignored (animal),
# so we assert that we don't have the ignored feature in the final Bunch
assert dataset['data'].shape == (101, 16)
assert 'animal' not in dataset['feature_names']