50 lines
1.5 KiB
Python
50 lines
1.5 KiB
Python
import numpy as np
|
|
|
|
|
|
def unique_rows(ar):
|
|
"""Remove repeated rows from a 2D array.
|
|
|
|
In particular, if given an array of coordinates of shape
|
|
(Npoints, Ndim), it will remove repeated points.
|
|
|
|
Parameters
|
|
----------
|
|
ar : 2-D ndarray
|
|
The input array.
|
|
|
|
Returns
|
|
-------
|
|
ar_out : 2-D ndarray
|
|
A copy of the input array with repeated rows removed.
|
|
|
|
Raises
|
|
------
|
|
ValueError : if `ar` is not two-dimensional.
|
|
|
|
Notes
|
|
-----
|
|
The function will generate a copy of `ar` if it is not
|
|
C-contiguous, which will negatively affect performance for large
|
|
input arrays.
|
|
|
|
Examples
|
|
--------
|
|
>>> ar = np.array([[1, 0, 1],
|
|
... [0, 1, 0],
|
|
... [1, 0, 1]], np.uint8)
|
|
>>> unique_rows(ar)
|
|
array([[0, 1, 0],
|
|
[1, 0, 1]], dtype=uint8)
|
|
"""
|
|
if ar.ndim != 2:
|
|
raise ValueError("unique_rows() only makes sense for 2D arrays, "
|
|
"got %dd" % ar.ndim)
|
|
# the view in the next line only works if the array is C-contiguous
|
|
ar = np.ascontiguousarray(ar)
|
|
# np.unique() finds identical items in a raveled array. To make it
|
|
# see each row as a single item, we create a view of each row as a
|
|
# byte string of length itemsize times number of columns in `ar`
|
|
ar_row_view = ar.view('|S%d' % (ar.itemsize * ar.shape[1]))
|
|
_, unique_row_indices = np.unique(ar_row_view, return_index=True)
|
|
ar_out = ar[unique_row_indices]
|
|
return ar_out
|