429 lines
17 KiB
Python
429 lines
17 KiB
Python
# Authors: Shane Grigsby <refuge@rocktalus.com>
|
|
# Adrin Jalali <adrin.jalali@gmail.com>
|
|
# License: BSD 3 clause
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
from sklearn.datasets import make_blobs
|
|
from sklearn.cluster import OPTICS
|
|
from sklearn.cluster._optics import _extend_region, _extract_xi_labels
|
|
from sklearn.metrics.cluster import contingency_matrix
|
|
from sklearn.metrics.pairwise import pairwise_distances
|
|
from sklearn.cluster import DBSCAN
|
|
from sklearn.utils import shuffle
|
|
from sklearn.utils._testing import assert_array_equal
|
|
from sklearn.utils._testing import assert_raise_message
|
|
from sklearn.utils._testing import assert_allclose
|
|
|
|
from sklearn.cluster.tests.common import generate_clustered_data
|
|
|
|
|
|
rng = np.random.RandomState(0)
|
|
n_points_per_cluster = 10
|
|
C1 = [-5, -2] + .8 * rng.randn(n_points_per_cluster, 2)
|
|
C2 = [4, -1] + .1 * rng.randn(n_points_per_cluster, 2)
|
|
C3 = [1, -2] + .2 * rng.randn(n_points_per_cluster, 2)
|
|
C4 = [-2, 3] + .3 * rng.randn(n_points_per_cluster, 2)
|
|
C5 = [3, -2] + 1.6 * rng.randn(n_points_per_cluster, 2)
|
|
C6 = [5, 6] + 2 * rng.randn(n_points_per_cluster, 2)
|
|
X = np.vstack((C1, C2, C3, C4, C5, C6))
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
('r_plot', 'end'),
|
|
[[[10, 8.9, 8.8, 8.7, 7, 10], 3],
|
|
[[10, 8.9, 8.8, 8.7, 8.6, 7, 10], 0],
|
|
[[10, 8.9, 8.8, 8.7, 7, 6, np.inf], 4],
|
|
[[10, 8.9, 8.8, 8.7, 7, 6, np.inf], 4],
|
|
])
|
|
def test_extend_downward(r_plot, end):
|
|
r_plot = np.array(r_plot)
|
|
ratio = r_plot[:-1] / r_plot[1:]
|
|
steep_downward = ratio >= 1 / .9
|
|
upward = ratio < 1
|
|
|
|
e = _extend_region(steep_downward, upward, 0, 2)
|
|
assert e == end
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
('r_plot', 'end'),
|
|
[[[1, 2, 2.1, 2.2, 4, 8, 8, np.inf], 6],
|
|
[[1, 2, 2.1, 2.2, 2.3, 4, 8, 8, np.inf], 0],
|
|
[[1, 2, 2.1, 2, np.inf], 0],
|
|
[[1, 2, 2.1, np.inf], 2],
|
|
])
|
|
def test_extend_upward(r_plot, end):
|
|
r_plot = np.array(r_plot)
|
|
ratio = r_plot[:-1] / r_plot[1:]
|
|
steep_upward = ratio <= .9
|
|
downward = ratio > 1
|
|
|
|
e = _extend_region(steep_upward, downward, 0, 2)
|
|
assert e == end
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
('ordering', 'clusters', 'expected'),
|
|
[[[0, 1, 2, 3], [[0, 1], [2, 3]], [0, 0, 1, 1]],
|
|
[[0, 1, 2, 3], [[0, 1], [3, 3]], [0, 0, -1, 1]],
|
|
[[0, 1, 2, 3], [[0, 1], [3, 3], [0, 3]], [0, 0, -1, 1]],
|
|
[[3, 1, 2, 0], [[0, 1], [3, 3], [0, 3]], [1, 0, -1, 0]],
|
|
])
|
|
def test_the_extract_xi_labels(ordering, clusters, expected):
|
|
labels = _extract_xi_labels(ordering, clusters)
|
|
|
|
assert_array_equal(labels, expected)
|
|
|
|
|
|
def test_extract_xi():
|
|
# small and easy test (no clusters around other clusters)
|
|
# but with a clear noise data.
|
|
rng = np.random.RandomState(0)
|
|
n_points_per_cluster = 5
|
|
|
|
C1 = [-5, -2] + .8 * rng.randn(n_points_per_cluster, 2)
|
|
C2 = [4, -1] + .1 * rng.randn(n_points_per_cluster, 2)
|
|
C3 = [1, -2] + .2 * rng.randn(n_points_per_cluster, 2)
|
|
C4 = [-2, 3] + .3 * rng.randn(n_points_per_cluster, 2)
|
|
C5 = [3, -2] + .6 * rng.randn(n_points_per_cluster, 2)
|
|
C6 = [5, 6] + .2 * rng.randn(n_points_per_cluster, 2)
|
|
|
|
X = np.vstack((C1, C2, C3, C4, C5, np.array([[100, 100]]), C6))
|
|
expected_labels = np.r_[[2] * 5, [0] * 5, [1] * 5, [3] * 5, [1] * 5,
|
|
-1, [4] * 5]
|
|
X, expected_labels = shuffle(X, expected_labels, random_state=rng)
|
|
|
|
clust = OPTICS(min_samples=3, min_cluster_size=2,
|
|
max_eps=20, cluster_method='xi',
|
|
xi=0.4).fit(X)
|
|
assert_array_equal(clust.labels_, expected_labels)
|
|
|
|
# check float min_samples and min_cluster_size
|
|
clust = OPTICS(min_samples=0.1, min_cluster_size=0.08,
|
|
max_eps=20, cluster_method='xi',
|
|
xi=0.4).fit(X)
|
|
assert_array_equal(clust.labels_, expected_labels)
|
|
|
|
X = np.vstack((C1, C2, C3, C4, C5, np.array([[100, 100]] * 2), C6))
|
|
expected_labels = np.r_[[1] * 5, [3] * 5, [2] * 5, [0] * 5, [2] * 5,
|
|
-1, -1, [4] * 5]
|
|
X, expected_labels = shuffle(X, expected_labels, random_state=rng)
|
|
|
|
clust = OPTICS(min_samples=3, min_cluster_size=3,
|
|
max_eps=20, cluster_method='xi',
|
|
xi=0.3).fit(X)
|
|
# this may fail if the predecessor correction is not at work!
|
|
assert_array_equal(clust.labels_, expected_labels)
|
|
|
|
C1 = [[0, 0], [0, 0.1], [0, -.1], [0.1, 0]]
|
|
C2 = [[10, 10], [10, 9], [10, 11], [9, 10]]
|
|
C3 = [[100, 100], [100, 90], [100, 110], [90, 100]]
|
|
X = np.vstack((C1, C2, C3))
|
|
expected_labels = np.r_[[0] * 4, [1] * 4, [2] * 4]
|
|
X, expected_labels = shuffle(X, expected_labels, random_state=rng)
|
|
|
|
clust = OPTICS(min_samples=2, min_cluster_size=2,
|
|
max_eps=np.inf, cluster_method='xi',
|
|
xi=0.04).fit(X)
|
|
assert_array_equal(clust.labels_, expected_labels)
|
|
|
|
|
|
def test_cluster_hierarchy_():
|
|
rng = np.random.RandomState(0)
|
|
n_points_per_cluster = 100
|
|
C1 = [0, 0] + 2 * rng.randn(n_points_per_cluster, 2)
|
|
C2 = [0, 0] + 50 * rng.randn(n_points_per_cluster, 2)
|
|
X = np.vstack((C1, C2))
|
|
X = shuffle(X, random_state=0)
|
|
|
|
clusters = OPTICS(min_samples=20, xi=.1).fit(X).cluster_hierarchy_
|
|
assert clusters.shape == (2, 2)
|
|
diff = np.sum(clusters - np.array([[0, 99], [0, 199]]))
|
|
assert diff / len(X) < 0.05
|
|
|
|
|
|
def test_correct_number_of_clusters():
|
|
# in 'auto' mode
|
|
|
|
n_clusters = 3
|
|
X = generate_clustered_data(n_clusters=n_clusters)
|
|
# Parameters chosen specifically for this task.
|
|
# Compute OPTICS
|
|
clust = OPTICS(max_eps=5.0 * 6.0, min_samples=4, xi=.1)
|
|
clust.fit(X)
|
|
# number of clusters, ignoring noise if present
|
|
n_clusters_1 = len(set(clust.labels_)) - int(-1 in clust.labels_)
|
|
assert n_clusters_1 == n_clusters
|
|
|
|
# check attribute types and sizes
|
|
assert clust.labels_.shape == (len(X),)
|
|
assert clust.labels_.dtype.kind == 'i'
|
|
|
|
assert clust.reachability_.shape == (len(X),)
|
|
assert clust.reachability_.dtype.kind == 'f'
|
|
|
|
assert clust.core_distances_.shape == (len(X),)
|
|
assert clust.core_distances_.dtype.kind == 'f'
|
|
|
|
assert clust.ordering_.shape == (len(X),)
|
|
assert clust.ordering_.dtype.kind == 'i'
|
|
assert set(clust.ordering_) == set(range(len(X)))
|
|
|
|
|
|
def test_minimum_number_of_sample_check():
|
|
# test that we check a minimum number of samples
|
|
msg = "min_samples must be no greater than"
|
|
|
|
# Compute OPTICS
|
|
X = [[1, 1]]
|
|
clust = OPTICS(max_eps=5.0 * 0.3, min_samples=10, min_cluster_size=1)
|
|
|
|
# Run the fit
|
|
assert_raise_message(ValueError, msg, clust.fit, X)
|
|
|
|
|
|
def test_bad_extract():
|
|
# Test an extraction of eps too close to original eps
|
|
msg = "Specify an epsilon smaller than 0.15. Got 0.3."
|
|
centers = [[1, 1], [-1, -1], [1, -1]]
|
|
X, labels_true = make_blobs(n_samples=750, centers=centers,
|
|
cluster_std=0.4, random_state=0)
|
|
|
|
# Compute OPTICS
|
|
clust = OPTICS(max_eps=5.0 * 0.03,
|
|
cluster_method='dbscan',
|
|
eps=0.3, min_samples=10)
|
|
assert_raise_message(ValueError, msg, clust.fit, X)
|
|
|
|
|
|
def test_bad_reachability():
|
|
msg = "All reachability values are inf. Set a larger max_eps."
|
|
centers = [[1, 1], [-1, -1], [1, -1]]
|
|
X, labels_true = make_blobs(n_samples=750, centers=centers,
|
|
cluster_std=0.4, random_state=0)
|
|
|
|
with pytest.warns(UserWarning, match=msg):
|
|
clust = OPTICS(max_eps=5.0 * 0.003, min_samples=10, eps=0.015)
|
|
clust.fit(X)
|
|
|
|
|
|
def test_close_extract():
|
|
# Test extract where extraction eps is close to scaled max_eps
|
|
|
|
centers = [[1, 1], [-1, -1], [1, -1]]
|
|
X, labels_true = make_blobs(n_samples=750, centers=centers,
|
|
cluster_std=0.4, random_state=0)
|
|
|
|
# Compute OPTICS
|
|
clust = OPTICS(max_eps=1.0, cluster_method='dbscan',
|
|
eps=0.3, min_samples=10).fit(X)
|
|
# Cluster ordering starts at 0; max cluster label = 2 is 3 clusters
|
|
assert max(clust.labels_) == 2
|
|
|
|
|
|
@pytest.mark.parametrize('eps', [0.1, .3, .5])
|
|
@pytest.mark.parametrize('min_samples', [3, 10, 20])
|
|
def test_dbscan_optics_parity(eps, min_samples):
|
|
# Test that OPTICS clustering labels are <= 5% difference of DBSCAN
|
|
|
|
centers = [[1, 1], [-1, -1], [1, -1]]
|
|
X, labels_true = make_blobs(n_samples=750, centers=centers,
|
|
cluster_std=0.4, random_state=0)
|
|
|
|
# calculate optics with dbscan extract at 0.3 epsilon
|
|
op = OPTICS(min_samples=min_samples, cluster_method='dbscan',
|
|
eps=eps).fit(X)
|
|
|
|
# calculate dbscan labels
|
|
db = DBSCAN(eps=eps, min_samples=min_samples).fit(X)
|
|
|
|
contingency = contingency_matrix(db.labels_, op.labels_)
|
|
agree = min(np.sum(np.max(contingency, axis=0)),
|
|
np.sum(np.max(contingency, axis=1)))
|
|
disagree = X.shape[0] - agree
|
|
|
|
percent_mismatch = np.round((disagree - 1) / X.shape[0], 2)
|
|
|
|
# verify label mismatch is <= 5% labels
|
|
assert percent_mismatch <= 0.05
|
|
|
|
|
|
def test_min_samples_edge_case():
|
|
C1 = [[0, 0], [0, 0.1], [0, -.1]]
|
|
C2 = [[10, 10], [10, 9], [10, 11]]
|
|
C3 = [[100, 100], [100, 96], [100, 106]]
|
|
X = np.vstack((C1, C2, C3))
|
|
|
|
expected_labels = np.r_[[0] * 3, [1] * 3, [2] * 3]
|
|
clust = OPTICS(min_samples=3,
|
|
max_eps=7, cluster_method='xi',
|
|
xi=0.04).fit(X)
|
|
assert_array_equal(clust.labels_, expected_labels)
|
|
|
|
expected_labels = np.r_[[0] * 3, [1] * 3, [-1] * 3]
|
|
clust = OPTICS(min_samples=3,
|
|
max_eps=3, cluster_method='xi',
|
|
xi=0.04).fit(X)
|
|
assert_array_equal(clust.labels_, expected_labels)
|
|
|
|
expected_labels = np.r_[[-1] * 9]
|
|
with pytest.warns(UserWarning, match="All reachability values"):
|
|
clust = OPTICS(min_samples=4,
|
|
max_eps=3, cluster_method='xi',
|
|
xi=0.04).fit(X)
|
|
assert_array_equal(clust.labels_, expected_labels)
|
|
|
|
|
|
# try arbitrary minimum sizes
|
|
@pytest.mark.parametrize('min_cluster_size', range(2, X.shape[0] // 10, 23))
|
|
def test_min_cluster_size(min_cluster_size):
|
|
redX = X[::2] # reduce for speed
|
|
clust = OPTICS(min_samples=9, min_cluster_size=min_cluster_size).fit(redX)
|
|
cluster_sizes = np.bincount(clust.labels_[clust.labels_ != -1])
|
|
if cluster_sizes.size:
|
|
assert min(cluster_sizes) >= min_cluster_size
|
|
# check behaviour is the same when min_cluster_size is a fraction
|
|
clust_frac = OPTICS(min_samples=9,
|
|
min_cluster_size=min_cluster_size / redX.shape[0])
|
|
clust_frac.fit(redX)
|
|
assert_array_equal(clust.labels_, clust_frac.labels_)
|
|
|
|
|
|
@pytest.mark.parametrize('min_cluster_size', [0, -1, 1.1, 2.2])
|
|
def test_min_cluster_size_invalid(min_cluster_size):
|
|
clust = OPTICS(min_cluster_size=min_cluster_size)
|
|
with pytest.raises(ValueError, match="must be a positive integer or a "):
|
|
clust.fit(X)
|
|
|
|
|
|
def test_min_cluster_size_invalid2():
|
|
clust = OPTICS(min_cluster_size=len(X) + 1)
|
|
with pytest.raises(ValueError, match="must be no greater than the "):
|
|
clust.fit(X)
|
|
|
|
|
|
def test_processing_order():
|
|
# Ensure that we consider all unprocessed points,
|
|
# not only direct neighbors. when picking the next point.
|
|
Y = [[0], [10], [-10], [25]]
|
|
clust = OPTICS(min_samples=3, max_eps=15).fit(Y)
|
|
assert_array_equal(clust.reachability_, [np.inf, 10, 10, 15])
|
|
assert_array_equal(clust.core_distances_, [10, 15, np.inf, np.inf])
|
|
assert_array_equal(clust.ordering_, [0, 1, 2, 3])
|
|
|
|
|
|
def test_compare_to_ELKI():
|
|
# Expected values, computed with (future) ELKI 0.7.5 using:
|
|
# java -jar elki.jar cli -dbc.in csv -dbc.filter FixedDBIDsFilter
|
|
# -algorithm clustering.optics.OPTICSHeap -optics.minpts 5
|
|
# where the FixedDBIDsFilter gives 0-indexed ids.
|
|
r1 = [np.inf, 1.0574896366427478, 0.7587934993548423, 0.7290174038973836,
|
|
0.7290174038973836, 0.7290174038973836, 0.6861627576116127,
|
|
0.7587934993548423, 0.9280118450166668, 1.1748022534146194,
|
|
3.3355455741292257, 0.49618389254482587, 0.2552805046961355,
|
|
0.2552805046961355, 0.24944622248445714, 0.24944622248445714,
|
|
0.24944622248445714, 0.2552805046961355, 0.2552805046961355,
|
|
0.3086779122185853, 4.163024452756142, 1.623152630340929,
|
|
0.45315840475822655, 0.25468325192031926, 0.2254004358159971,
|
|
0.18765711877083036, 0.1821471333893275, 0.1821471333893275,
|
|
0.18765711877083036, 0.18765711877083036, 0.2240202988740153,
|
|
1.154337614548715, 1.342604473837069, 1.323308536402633,
|
|
0.8607514948648837, 0.27219111215810565, 0.13260875220533205,
|
|
0.13260875220533205, 0.09890587675958984, 0.09890587675958984,
|
|
0.13548790801634494, 0.1575483940837384, 0.17515137170530226,
|
|
0.17575920159442388, 0.27219111215810565, 0.6101447895405373,
|
|
1.3189208094864302, 1.323308536402633, 2.2509184159764577,
|
|
2.4517810628594527, 3.675977064404973, 3.8264795626020365,
|
|
2.9130735341510614, 2.9130735341510614, 2.9130735341510614,
|
|
2.9130735341510614, 2.8459300127258036, 2.8459300127258036,
|
|
2.8459300127258036, 3.0321982337972537]
|
|
o1 = [0, 3, 6, 4, 7, 8, 2, 9, 5, 1, 31, 30, 32, 34, 33, 38, 39, 35, 37, 36,
|
|
44, 21, 23, 24, 22, 25, 27, 29, 26, 28, 20, 40, 45, 46, 10, 15, 11,
|
|
13, 17, 19, 18, 12, 16, 14, 47, 49, 43, 48, 42, 41, 53, 57, 51, 52,
|
|
56, 59, 54, 55, 58, 50]
|
|
p1 = [-1, 0, 3, 6, 6, 6, 8, 3, 7, 5, 1, 31, 30, 30, 34, 34, 34, 32, 32, 37,
|
|
36, 44, 21, 23, 24, 22, 25, 25, 22, 22, 22, 21, 40, 45, 46, 10, 15,
|
|
15, 13, 13, 15, 11, 19, 15, 10, 47, 12, 45, 14, 43, 42, 53, 57, 57,
|
|
57, 57, 59, 59, 59, 58]
|
|
|
|
# Tests against known extraction array
|
|
# Does NOT work with metric='euclidean', because sklearn euclidean has
|
|
# worse numeric precision. 'minkowski' is slower but more accurate.
|
|
clust1 = OPTICS(min_samples=5).fit(X)
|
|
|
|
assert_array_equal(clust1.ordering_, np.array(o1))
|
|
assert_array_equal(clust1.predecessor_[clust1.ordering_], np.array(p1))
|
|
assert_allclose(clust1.reachability_[clust1.ordering_], np.array(r1))
|
|
# ELKI currently does not print the core distances (which are not used much
|
|
# in literature, but we can at least ensure to have this consistency:
|
|
for i in clust1.ordering_[1:]:
|
|
assert (clust1.reachability_[i] >=
|
|
clust1.core_distances_[clust1.predecessor_[i]])
|
|
|
|
# Expected values, computed with (future) ELKI 0.7.5 using
|
|
r2 = [np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf,
|
|
np.inf, np.inf, np.inf, 0.27219111215810565, 0.13260875220533205,
|
|
0.13260875220533205, 0.09890587675958984, 0.09890587675958984,
|
|
0.13548790801634494, 0.1575483940837384, 0.17515137170530226,
|
|
0.17575920159442388, 0.27219111215810565, 0.4928068613197889,
|
|
np.inf, 0.2666183922512113, 0.18765711877083036, 0.1821471333893275,
|
|
0.1821471333893275, 0.1821471333893275, 0.18715928772277457,
|
|
0.18765711877083036, 0.18765711877083036, 0.25468325192031926,
|
|
np.inf, 0.2552805046961355, 0.2552805046961355, 0.24944622248445714,
|
|
0.24944622248445714, 0.24944622248445714, 0.2552805046961355,
|
|
0.2552805046961355, 0.3086779122185853, 0.34466409325984865,
|
|
np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf,
|
|
np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf,
|
|
np.inf, np.inf]
|
|
o2 = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 11, 13, 17, 19, 18, 12, 16, 14,
|
|
47, 46, 20, 22, 25, 23, 27, 29, 24, 26, 28, 21, 30, 32, 34, 33, 38,
|
|
39, 35, 37, 36, 31, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 52, 53,
|
|
54, 55, 56, 57, 58, 59]
|
|
p2 = [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 10, 15, 15, 13, 13, 15,
|
|
11, 19, 15, 10, 47, -1, 20, 22, 25, 25, 25, 25, 22, 22, 23, -1, 30,
|
|
30, 34, 34, 34, 32, 32, 37, 38, -1, -1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1, -1]
|
|
clust2 = OPTICS(min_samples=5, max_eps=0.5).fit(X)
|
|
|
|
assert_array_equal(clust2.ordering_, np.array(o2))
|
|
assert_array_equal(clust2.predecessor_[clust2.ordering_], np.array(p2))
|
|
assert_allclose(clust2.reachability_[clust2.ordering_], np.array(r2))
|
|
|
|
index = np.where(clust1.core_distances_ <= 0.5)[0]
|
|
assert_allclose(clust1.core_distances_[index],
|
|
clust2.core_distances_[index])
|
|
|
|
|
|
def test_wrong_cluster_method():
|
|
clust = OPTICS(cluster_method='superfancy')
|
|
with pytest.raises(ValueError, match="cluster_method should be one of "):
|
|
clust.fit(X)
|
|
|
|
|
|
def test_extract_dbscan():
|
|
# testing an easy dbscan case. Not including clusters with different
|
|
# densities.
|
|
rng = np.random.RandomState(0)
|
|
n_points_per_cluster = 20
|
|
C1 = [-5, -2] + .2 * rng.randn(n_points_per_cluster, 2)
|
|
C2 = [4, -1] + .2 * rng.randn(n_points_per_cluster, 2)
|
|
C3 = [1, 2] + .2 * rng.randn(n_points_per_cluster, 2)
|
|
C4 = [-2, 3] + .2 * rng.randn(n_points_per_cluster, 2)
|
|
X = np.vstack((C1, C2, C3, C4))
|
|
|
|
clust = OPTICS(cluster_method='dbscan', eps=.5).fit(X)
|
|
assert_array_equal(np.sort(np.unique(clust.labels_)), [0, 1, 2, 3])
|
|
|
|
|
|
def test_precomputed_dists():
|
|
redX = X[::2]
|
|
dists = pairwise_distances(redX, metric='euclidean')
|
|
clust1 = OPTICS(min_samples=10, algorithm='brute',
|
|
metric='precomputed').fit(dists)
|
|
clust2 = OPTICS(min_samples=10, algorithm='brute',
|
|
metric='euclidean').fit(redX)
|
|
|
|
assert_allclose(clust1.reachability_, clust2.reachability_)
|
|
assert_array_equal(clust1.labels_, clust2.labels_)
|