214 lines
7.8 KiB
Python
214 lines
7.8 KiB
Python
from skimage._shared import testing
|
|
from skimage._shared.testing import assert_array_equal, assert_allclose
|
|
|
|
import numpy as np
|
|
from skimage.data import camera
|
|
from skimage.util import random_noise, img_as_float
|
|
|
|
|
|
def test_set_seed():
|
|
seed = 42
|
|
cam = camera()
|
|
test = random_noise(cam, seed=seed)
|
|
assert_array_equal(test, random_noise(cam, seed=seed))
|
|
|
|
|
|
def test_salt():
|
|
seed = 42
|
|
cam = img_as_float(camera())
|
|
cam_noisy = random_noise(cam, seed=seed, mode='salt', amount=0.15)
|
|
saltmask = cam != cam_noisy
|
|
|
|
# Ensure all changes are to 1.0
|
|
assert_allclose(cam_noisy[saltmask], np.ones(saltmask.sum()))
|
|
|
|
# Ensure approximately correct amount of noise was added
|
|
proportion = float(saltmask.sum()) / (cam.shape[0] * cam.shape[1])
|
|
assert 0.11 < proportion <= 0.15
|
|
|
|
|
|
def test_salt_p1():
|
|
image = np.random.rand(2, 3)
|
|
noisy = random_noise(image, mode='salt', amount=1)
|
|
assert_array_equal(noisy, [[1, 1, 1], [1, 1, 1]])
|
|
|
|
|
|
def test_singleton_dim():
|
|
"""Ensure images where size of a given dimension is 1 work correctly."""
|
|
image = np.random.rand(1, 20)
|
|
noisy = random_noise(image, mode='salt', amount=0.1, seed=42)
|
|
assert np.sum(noisy == 1) == 2
|
|
|
|
|
|
def test_pepper():
|
|
seed = 42
|
|
cam = img_as_float(camera())
|
|
data_signed = cam * 2. - 1. # Same image, on range [-1, 1]
|
|
|
|
cam_noisy = random_noise(cam, seed=seed, mode='pepper', amount=0.15)
|
|
peppermask = cam != cam_noisy
|
|
|
|
# Ensure all changes are to 1.0
|
|
assert_allclose(cam_noisy[peppermask], np.zeros(peppermask.sum()))
|
|
|
|
# Ensure approximately correct amount of noise was added
|
|
proportion = float(peppermask.sum()) / (cam.shape[0] * cam.shape[1])
|
|
assert 0.11 < proportion <= 0.15
|
|
|
|
# Check to make sure pepper gets added properly to signed images
|
|
orig_zeros = (data_signed == -1).sum()
|
|
cam_noisy_signed = random_noise(data_signed, seed=seed, mode='pepper',
|
|
amount=.15)
|
|
|
|
proportion = (float((cam_noisy_signed == -1).sum() - orig_zeros) /
|
|
(cam.shape[0] * cam.shape[1]))
|
|
assert 0.11 < proportion <= 0.15
|
|
|
|
|
|
def test_salt_and_pepper():
|
|
seed = 42
|
|
cam = img_as_float(camera())
|
|
cam_noisy = random_noise(cam, seed=seed, mode='s&p', amount=0.15,
|
|
salt_vs_pepper=0.25)
|
|
saltmask = np.logical_and(cam != cam_noisy, cam_noisy == 1.)
|
|
peppermask = np.logical_and(cam != cam_noisy, cam_noisy == 0.)
|
|
|
|
# Ensure all changes are to 0. or 1.
|
|
assert_allclose(cam_noisy[saltmask], np.ones(saltmask.sum()))
|
|
assert_allclose(cam_noisy[peppermask], np.zeros(peppermask.sum()))
|
|
|
|
# Ensure approximately correct amount of noise was added
|
|
proportion = float(
|
|
saltmask.sum() + peppermask.sum()) / (cam.shape[0] * cam.shape[1])
|
|
assert 0.11 < proportion <= 0.18
|
|
|
|
# Verify the relative amount of salt vs. pepper is close to expected
|
|
assert 0.18 < saltmask.sum() / float(peppermask.sum()) < 0.33
|
|
|
|
|
|
def test_gaussian():
|
|
seed = 42
|
|
data = np.zeros((128, 128)) + 0.5
|
|
data_gaussian = random_noise(data, seed=seed, var=0.01)
|
|
assert 0.008 < data_gaussian.var() < 0.012
|
|
|
|
data_gaussian = random_noise(data, seed=seed, mean=0.3, var=0.015)
|
|
assert 0.28 < data_gaussian.mean() - 0.5 < 0.32
|
|
assert 0.012 < data_gaussian.var() < 0.018
|
|
|
|
|
|
def test_localvar():
|
|
seed = 42
|
|
data = np.zeros((128, 128)) + 0.5
|
|
local_vars = np.zeros((128, 128)) + 0.001
|
|
local_vars[:64, 64:] = 0.1
|
|
local_vars[64:, :64] = 0.25
|
|
local_vars[64:, 64:] = 0.45
|
|
|
|
data_gaussian = random_noise(data, mode='localvar', seed=seed,
|
|
local_vars=local_vars, clip=False)
|
|
assert 0. < data_gaussian[:64, :64].var() < 0.002
|
|
assert 0.095 < data_gaussian[:64, 64:].var() < 0.105
|
|
assert 0.245 < data_gaussian[64:, :64].var() < 0.255
|
|
assert 0.445 < data_gaussian[64:, 64:].var() < 0.455
|
|
|
|
# Ensure local variance bounds checking works properly
|
|
bad_local_vars = np.zeros_like(data)
|
|
with testing.raises(ValueError):
|
|
random_noise(data, mode='localvar', seed=seed,
|
|
local_vars=bad_local_vars)
|
|
bad_local_vars += 0.1
|
|
bad_local_vars[0, 0] = -1
|
|
with testing.raises(ValueError):
|
|
random_noise(data, mode='localvar', seed=seed,
|
|
local_vars=bad_local_vars)
|
|
|
|
|
|
def test_speckle():
|
|
seed = 42
|
|
data = np.zeros((128, 128)) + 0.1
|
|
np.random.seed(seed=seed)
|
|
noise = np.random.normal(0.1, 0.02 ** 0.5, (128, 128))
|
|
expected = np.clip(data + data * noise, 0, 1)
|
|
|
|
data_speckle = random_noise(data, mode='speckle', seed=seed, mean=0.1,
|
|
var=0.02)
|
|
assert_allclose(expected, data_speckle)
|
|
|
|
|
|
def test_poisson():
|
|
seed = 42
|
|
data = camera() # 512x512 grayscale uint8
|
|
cam_noisy = random_noise(data, mode='poisson', seed=seed)
|
|
cam_noisy2 = random_noise(data, mode='poisson', seed=seed, clip=False)
|
|
|
|
np.random.seed(seed=seed)
|
|
expected = np.random.poisson(img_as_float(data) * 256) / 256.
|
|
assert_allclose(cam_noisy, np.clip(expected, 0., 1.))
|
|
assert_allclose(cam_noisy2, expected)
|
|
|
|
|
|
def test_clip_poisson():
|
|
seed = 42
|
|
data = camera() # 512x512 grayscale uint8
|
|
data_signed = img_as_float(data) * 2. - 1. # Same image, on range [-1, 1]
|
|
|
|
# Signed and unsigned, clipped
|
|
cam_poisson = random_noise(data, mode='poisson', seed=seed, clip=True)
|
|
cam_poisson2 = random_noise(data_signed, mode='poisson', seed=seed,
|
|
clip=True)
|
|
assert (cam_poisson.max() == 1.) and (cam_poisson.min() == 0.)
|
|
assert (cam_poisson2.max() == 1.) and (cam_poisson2.min() == -1.)
|
|
|
|
# Signed and unsigned, unclipped
|
|
cam_poisson = random_noise(data, mode='poisson', seed=seed, clip=False)
|
|
cam_poisson2 = random_noise(data_signed, mode='poisson', seed=seed,
|
|
clip=False)
|
|
assert (cam_poisson.max() > 1.15) and (cam_poisson.min() == 0.)
|
|
assert (cam_poisson2.max() > 1.3) and (cam_poisson2.min() == -1.)
|
|
|
|
|
|
def test_clip_gaussian():
|
|
seed = 42
|
|
data = camera() # 512x512 grayscale uint8
|
|
data_signed = img_as_float(data) * 2. - 1. # Same image, on range [-1, 1]
|
|
|
|
# Signed and unsigned, clipped
|
|
cam_gauss = random_noise(data, mode='gaussian', seed=seed, clip=True)
|
|
cam_gauss2 = random_noise(data_signed, mode='gaussian', seed=seed,
|
|
clip=True)
|
|
assert (cam_gauss.max() == 1.) and (cam_gauss.min() == 0.)
|
|
assert (cam_gauss2.max() == 1.) and (cam_gauss2.min() == -1.)
|
|
|
|
# Signed and unsigned, unclipped
|
|
cam_gauss = random_noise(data, mode='gaussian', seed=seed, clip=False)
|
|
cam_gauss2 = random_noise(data_signed, mode='gaussian', seed=seed,
|
|
clip=False)
|
|
assert (cam_gauss.max() > 1.22) and (cam_gauss.min() < -0.36)
|
|
assert (cam_gauss2.max() > 1.219) and (cam_gauss2.min() < -1.337)
|
|
|
|
|
|
def test_clip_speckle():
|
|
seed = 42
|
|
data = camera() # 512x512 grayscale uint8
|
|
data_signed = img_as_float(data) * 2. - 1. # Same image, on range [-1, 1]
|
|
|
|
# Signed and unsigned, clipped
|
|
cam_speckle = random_noise(data, mode='speckle', seed=seed, clip=True)
|
|
cam_speckle2 = random_noise(data_signed, mode='speckle', seed=seed,
|
|
clip=True)
|
|
assert (cam_speckle.max() == 1.) and (cam_speckle.min() == 0.)
|
|
assert (cam_speckle2.max() == 1.) and (cam_speckle2.min() == -1.)
|
|
|
|
# Signed and unsigned, unclipped
|
|
cam_speckle = random_noise(data, mode='speckle', seed=seed, clip=False)
|
|
cam_speckle2 = random_noise(data_signed, mode='speckle', seed=seed,
|
|
clip=False)
|
|
assert (cam_speckle.max() > 1.219) and (cam_speckle.min() == 0.)
|
|
assert (cam_speckle2.max() > 1.219) and (cam_speckle2.min() < -1.306)
|
|
|
|
|
|
def test_bad_mode():
|
|
data = np.zeros((64, 64))
|
|
with testing.raises(KeyError):
|
|
random_noise(data, 'perlin')
|