105 lines
3.8 KiB
Python
105 lines
3.8 KiB
Python
import numpy as np
|
|
from skimage._shared.testing import assert_array_equal
|
|
from skimage.data import moon
|
|
from skimage.feature import CENSURE
|
|
from skimage._shared.testing import test_parallel
|
|
from skimage._shared import testing
|
|
from skimage.transform import rescale
|
|
|
|
|
|
img = moon()
|
|
np.random.seed(0)
|
|
|
|
|
|
def test_censure_on_rectangular_images():
|
|
"""Censure feature detector should work on 2D image of any shape."""
|
|
rect_image = np.random.rand(300, 200)
|
|
square_image = np.random.rand(200, 200)
|
|
CENSURE().detect((square_image))
|
|
CENSURE().detect((rect_image))
|
|
|
|
|
|
def test_keypoints_censure_color_image_unsupported_error():
|
|
"""Censure keypoints can be extracted from gray-scale images only."""
|
|
with testing.raises(ValueError):
|
|
CENSURE().detect(np.zeros((20, 20, 3)))
|
|
|
|
|
|
def test_keypoints_censure_mode_validity_error():
|
|
"""Mode argument in keypoints_censure can be either DoB, Octagon or
|
|
STAR."""
|
|
with testing.raises(ValueError):
|
|
CENSURE(mode='dummy')
|
|
|
|
|
|
def test_keypoints_censure_scale_range_error():
|
|
"""Difference between the the max_scale and min_scale parameters in
|
|
keypoints_censure should be greater than or equal to two."""
|
|
with testing.raises(ValueError):
|
|
CENSURE(min_scale=1, max_scale=2)
|
|
|
|
|
|
def test_keypoints_censure_moon_image_dob():
|
|
"""Verify the actual Censure keypoints and their corresponding scale with
|
|
the expected values for DoB filter."""
|
|
detector = CENSURE()
|
|
detector.detect(img)
|
|
expected_keypoints = np.array([[ 21, 497],
|
|
[ 36, 46],
|
|
[119, 350],
|
|
[185, 177],
|
|
[287, 250],
|
|
[357, 239],
|
|
[463, 116],
|
|
[464, 132],
|
|
[467, 260]])
|
|
expected_scales = np.array([3, 4, 4, 2, 2, 3, 2, 2, 2])
|
|
|
|
assert_array_equal(expected_keypoints, detector.keypoints)
|
|
assert_array_equal(expected_scales, detector.scales)
|
|
|
|
|
|
@test_parallel()
|
|
def test_keypoints_censure_moon_image_octagon():
|
|
"""Verify the actual Censure keypoints and their corresponding scale with
|
|
the expected values for Octagon filter."""
|
|
|
|
detector = CENSURE(mode='octagon')
|
|
# quarter scale image for speed
|
|
detector.detect(rescale(img, 0.25,
|
|
multichannel=False,
|
|
anti_aliasing=False,
|
|
mode='constant'))
|
|
expected_keypoints = np.array([[ 23, 27],
|
|
[ 29, 89],
|
|
[ 31, 87],
|
|
[106, 59],
|
|
[111, 67]])
|
|
|
|
expected_scales = np.array([3, 2, 5, 2, 4])
|
|
|
|
assert_array_equal(expected_keypoints, detector.keypoints)
|
|
assert_array_equal(expected_scales, detector.scales)
|
|
|
|
|
|
def test_keypoints_censure_moon_image_star():
|
|
"""Verify the actual Censure keypoints and their corresponding scale with
|
|
the expected values for STAR filter."""
|
|
detector = CENSURE(mode='star')
|
|
# quarter scale image for speed
|
|
detector.detect(rescale(img, 0.25,
|
|
multichannel=False,
|
|
anti_aliasing=False,
|
|
mode='constant'))
|
|
expected_keypoints = np.array([[ 23, 27],
|
|
[ 29, 89],
|
|
[ 30, 86],
|
|
[107, 59],
|
|
[109, 64],
|
|
[111, 67],
|
|
[113, 70]])
|
|
|
|
expected_scales = np.array([3, 2, 4, 2, 5, 3, 2])
|
|
|
|
assert_array_equal(expected_keypoints, detector.keypoints)
|
|
assert_array_equal(expected_scales, detector.scales)
|