Vehicle-Anti-Theft-Face-Rec.../venv/Lib/site-packages/skimage/feature/tests/test_censure.py

105 lines
3.8 KiB
Python

import numpy as np
from skimage._shared.testing import assert_array_equal
from skimage.data import moon
from skimage.feature import CENSURE
from skimage._shared.testing import test_parallel
from skimage._shared import testing
from skimage.transform import rescale
img = moon()
np.random.seed(0)
def test_censure_on_rectangular_images():
"""Censure feature detector should work on 2D image of any shape."""
rect_image = np.random.rand(300, 200)
square_image = np.random.rand(200, 200)
CENSURE().detect((square_image))
CENSURE().detect((rect_image))
def test_keypoints_censure_color_image_unsupported_error():
"""Censure keypoints can be extracted from gray-scale images only."""
with testing.raises(ValueError):
CENSURE().detect(np.zeros((20, 20, 3)))
def test_keypoints_censure_mode_validity_error():
"""Mode argument in keypoints_censure can be either DoB, Octagon or
STAR."""
with testing.raises(ValueError):
CENSURE(mode='dummy')
def test_keypoints_censure_scale_range_error():
"""Difference between the the max_scale and min_scale parameters in
keypoints_censure should be greater than or equal to two."""
with testing.raises(ValueError):
CENSURE(min_scale=1, max_scale=2)
def test_keypoints_censure_moon_image_dob():
"""Verify the actual Censure keypoints and their corresponding scale with
the expected values for DoB filter."""
detector = CENSURE()
detector.detect(img)
expected_keypoints = np.array([[ 21, 497],
[ 36, 46],
[119, 350],
[185, 177],
[287, 250],
[357, 239],
[463, 116],
[464, 132],
[467, 260]])
expected_scales = np.array([3, 4, 4, 2, 2, 3, 2, 2, 2])
assert_array_equal(expected_keypoints, detector.keypoints)
assert_array_equal(expected_scales, detector.scales)
@test_parallel()
def test_keypoints_censure_moon_image_octagon():
"""Verify the actual Censure keypoints and their corresponding scale with
the expected values for Octagon filter."""
detector = CENSURE(mode='octagon')
# quarter scale image for speed
detector.detect(rescale(img, 0.25,
multichannel=False,
anti_aliasing=False,
mode='constant'))
expected_keypoints = np.array([[ 23, 27],
[ 29, 89],
[ 31, 87],
[106, 59],
[111, 67]])
expected_scales = np.array([3, 2, 5, 2, 4])
assert_array_equal(expected_keypoints, detector.keypoints)
assert_array_equal(expected_scales, detector.scales)
def test_keypoints_censure_moon_image_star():
"""Verify the actual Censure keypoints and their corresponding scale with
the expected values for STAR filter."""
detector = CENSURE(mode='star')
# quarter scale image for speed
detector.detect(rescale(img, 0.25,
multichannel=False,
anti_aliasing=False,
mode='constant'))
expected_keypoints = np.array([[ 23, 27],
[ 29, 89],
[ 30, 86],
[107, 59],
[109, 64],
[111, 67],
[113, 70]])
expected_scales = np.array([3, 2, 4, 2, 5, 3, 2])
assert_array_equal(expected_keypoints, detector.keypoints)
assert_array_equal(expected_scales, detector.scales)