334 lines
12 KiB
Python
334 lines
12 KiB
Python
"""
|
|
Module for reading and writing matlab (TM) .mat files
|
|
"""
|
|
# Authors: Travis Oliphant, Matthew Brett
|
|
|
|
from contextlib import contextmanager
|
|
|
|
from .miobase import get_matfile_version, docfiller
|
|
from .mio4 import MatFile4Reader, MatFile4Writer
|
|
from .mio5 import MatFile5Reader, MatFile5Writer
|
|
|
|
__all__ = ['mat_reader_factory', 'loadmat', 'savemat', 'whosmat']
|
|
|
|
|
|
@contextmanager
|
|
def _open_file_context(file_like, appendmat, mode='rb'):
|
|
f, opened = _open_file(file_like, appendmat, mode)
|
|
try:
|
|
yield f
|
|
finally:
|
|
if opened:
|
|
f.close()
|
|
|
|
|
|
def _open_file(file_like, appendmat, mode='rb'):
|
|
"""
|
|
Open `file_like` and return as file-like object. First, check if object is
|
|
already file-like; if so, return it as-is. Otherwise, try to pass it
|
|
to open(). If that fails, and `file_like` is a string, and `appendmat` is true,
|
|
append '.mat' and try again.
|
|
"""
|
|
reqs = {'read'} if set(mode) & set('r+') else set()
|
|
if set(mode) & set('wax+'):
|
|
reqs.add('write')
|
|
if reqs.issubset(dir(file_like)):
|
|
return file_like, False
|
|
|
|
try:
|
|
return open(file_like, mode), True
|
|
except IOError:
|
|
# Probably "not found"
|
|
if isinstance(file_like, str):
|
|
if appendmat and not file_like.endswith('.mat'):
|
|
file_like += '.mat'
|
|
return open(file_like, mode), True
|
|
else:
|
|
raise IOError('Reader needs file name or open file-like object')
|
|
|
|
|
|
@docfiller
|
|
def mat_reader_factory(file_name, appendmat=True, **kwargs):
|
|
"""
|
|
Create reader for matlab .mat format files.
|
|
|
|
Parameters
|
|
----------
|
|
%(file_arg)s
|
|
%(append_arg)s
|
|
%(load_args)s
|
|
%(struct_arg)s
|
|
|
|
Returns
|
|
-------
|
|
matreader : MatFileReader object
|
|
Initialized instance of MatFileReader class matching the mat file
|
|
type detected in `filename`.
|
|
file_opened : bool
|
|
Whether the file was opened by this routine.
|
|
|
|
"""
|
|
byte_stream, file_opened = _open_file(file_name, appendmat)
|
|
mjv, mnv = get_matfile_version(byte_stream)
|
|
if mjv == 0:
|
|
return MatFile4Reader(byte_stream, **kwargs), file_opened
|
|
elif mjv == 1:
|
|
return MatFile5Reader(byte_stream, **kwargs), file_opened
|
|
elif mjv == 2:
|
|
raise NotImplementedError('Please use HDF reader for matlab v7.3 files')
|
|
else:
|
|
raise TypeError('Did not recognize version %s' % mjv)
|
|
|
|
|
|
@docfiller
|
|
def loadmat(file_name, mdict=None, appendmat=True, **kwargs):
|
|
"""
|
|
Load MATLAB file.
|
|
|
|
Parameters
|
|
----------
|
|
file_name : str
|
|
Name of the mat file (do not need .mat extension if
|
|
appendmat==True). Can also pass open file-like object.
|
|
mdict : dict, optional
|
|
Dictionary in which to insert matfile variables.
|
|
appendmat : bool, optional
|
|
True to append the .mat extension to the end of the given
|
|
filename, if not already present.
|
|
byte_order : str or None, optional
|
|
None by default, implying byte order guessed from mat
|
|
file. Otherwise can be one of ('native', '=', 'little', '<',
|
|
'BIG', '>').
|
|
mat_dtype : bool, optional
|
|
If True, return arrays in same dtype as would be loaded into
|
|
MATLAB (instead of the dtype with which they are saved).
|
|
squeeze_me : bool, optional
|
|
Whether to squeeze unit matrix dimensions or not.
|
|
chars_as_strings : bool, optional
|
|
Whether to convert char arrays to string arrays.
|
|
matlab_compatible : bool, optional
|
|
Returns matrices as would be loaded by MATLAB (implies
|
|
squeeze_me=False, chars_as_strings=False, mat_dtype=True,
|
|
struct_as_record=True).
|
|
struct_as_record : bool, optional
|
|
Whether to load MATLAB structs as NumPy record arrays, or as
|
|
old-style NumPy arrays with dtype=object. Setting this flag to
|
|
False replicates the behavior of scipy version 0.7.x (returning
|
|
NumPy object arrays). The default setting is True, because it
|
|
allows easier round-trip load and save of MATLAB files.
|
|
verify_compressed_data_integrity : bool, optional
|
|
Whether the length of compressed sequences in the MATLAB file
|
|
should be checked, to ensure that they are not longer than we expect.
|
|
It is advisable to enable this (the default) because overlong
|
|
compressed sequences in MATLAB files generally indicate that the
|
|
files have experienced some sort of corruption.
|
|
variable_names : None or sequence
|
|
If None (the default) - read all variables in file. Otherwise,
|
|
`variable_names` should be a sequence of strings, giving names of the
|
|
MATLAB variables to read from the file. The reader will skip any
|
|
variable with a name not in this sequence, possibly saving some read
|
|
processing.
|
|
simplify_cells : False, optional
|
|
If True, return a simplified dict structure (which is useful if the mat
|
|
file contains cell arrays). Note that this only affects the structure
|
|
of the result and not its contents (which is identical for both output
|
|
structures). If True, this automatically sets `struct_as_record` to
|
|
False and `squeeze_me` to True, which is required to simplify cells.
|
|
|
|
Returns
|
|
-------
|
|
mat_dict : dict
|
|
dictionary with variable names as keys, and loaded matrices as
|
|
values.
|
|
|
|
Notes
|
|
-----
|
|
v4 (Level 1.0), v6 and v7 to 7.2 matfiles are supported.
|
|
|
|
You will need an HDF5 Python library to read MATLAB 7.3 format mat
|
|
files. Because SciPy does not supply one, we do not implement the
|
|
HDF5 / 7.3 interface here.
|
|
|
|
Examples
|
|
--------
|
|
>>> from os.path import dirname, join as pjoin
|
|
>>> import scipy.io as sio
|
|
|
|
Get the filename for an example .mat file from the tests/data directory.
|
|
|
|
>>> data_dir = pjoin(dirname(sio.__file__), 'matlab', 'tests', 'data')
|
|
>>> mat_fname = pjoin(data_dir, 'testdouble_7.4_GLNX86.mat')
|
|
|
|
Load the .mat file contents.
|
|
|
|
>>> mat_contents = sio.loadmat(mat_fname)
|
|
|
|
The result is a dictionary, one key/value pair for each variable:
|
|
|
|
>>> sorted(mat_contents.keys())
|
|
['__globals__', '__header__', '__version__', 'testdouble']
|
|
>>> mat_contents['testdouble']
|
|
array([[0. , 0.78539816, 1.57079633, 2.35619449, 3.14159265,
|
|
3.92699082, 4.71238898, 5.49778714, 6.28318531]])
|
|
|
|
By default SciPy reads MATLAB structs as structured NumPy arrays where the
|
|
dtype fields are of type `object` and the names correspond to the MATLAB
|
|
struct field names. This can be disabled by setting the optional argument
|
|
`struct_as_record=False`.
|
|
|
|
Get the filename for an example .mat file that contains a MATLAB struct
|
|
called `teststruct` and load the contents.
|
|
|
|
>>> matstruct_fname = pjoin(data_dir, 'teststruct_7.4_GLNX86.mat')
|
|
>>> matstruct_contents = sio.loadmat(matstruct_fname)
|
|
>>> teststruct = matstruct_contents['teststruct']
|
|
>>> teststruct.dtype
|
|
dtype([('stringfield', 'O'), ('doublefield', 'O'), ('complexfield', 'O')])
|
|
|
|
The size of the structured array is the size of the MATLAB struct, not the
|
|
number of elements in any particular field. The shape defaults to 2-D
|
|
unless the optional argument `squeeze_me=True`, in which case all length 1
|
|
dimensions are removed.
|
|
|
|
>>> teststruct.size
|
|
1
|
|
>>> teststruct.shape
|
|
(1, 1)
|
|
|
|
Get the 'stringfield' of the first element in the MATLAB struct.
|
|
|
|
>>> teststruct[0, 0]['stringfield']
|
|
array(['Rats live on no evil star.'],
|
|
dtype='<U26')
|
|
|
|
Get the first element of the 'doublefield'.
|
|
|
|
>>> teststruct['doublefield'][0, 0]
|
|
array([[ 1.41421356, 2.71828183, 3.14159265]])
|
|
|
|
Load the MATLAB struct, squeezing out length 1 dimensions, and get the item
|
|
from the 'complexfield'.
|
|
|
|
>>> matstruct_squeezed = sio.loadmat(matstruct_fname, squeeze_me=True)
|
|
>>> matstruct_squeezed['teststruct'].shape
|
|
()
|
|
>>> matstruct_squeezed['teststruct']['complexfield'].shape
|
|
()
|
|
>>> matstruct_squeezed['teststruct']['complexfield'].item()
|
|
array([ 1.41421356+1.41421356j, 2.71828183+2.71828183j,
|
|
3.14159265+3.14159265j])
|
|
"""
|
|
variable_names = kwargs.pop('variable_names', None)
|
|
with _open_file_context(file_name, appendmat) as f:
|
|
MR, _ = mat_reader_factory(f, **kwargs)
|
|
matfile_dict = MR.get_variables(variable_names)
|
|
|
|
if mdict is not None:
|
|
mdict.update(matfile_dict)
|
|
else:
|
|
mdict = matfile_dict
|
|
|
|
return mdict
|
|
|
|
|
|
@docfiller
|
|
def savemat(file_name, mdict,
|
|
appendmat=True,
|
|
format='5',
|
|
long_field_names=False,
|
|
do_compression=False,
|
|
oned_as='row'):
|
|
"""
|
|
Save a dictionary of names and arrays into a MATLAB-style .mat file.
|
|
|
|
This saves the array objects in the given dictionary to a MATLAB-
|
|
style .mat file.
|
|
|
|
Parameters
|
|
----------
|
|
file_name : str or file-like object
|
|
Name of the .mat file (.mat extension not needed if ``appendmat ==
|
|
True``).
|
|
Can also pass open file_like object.
|
|
mdict : dict
|
|
Dictionary from which to save matfile variables.
|
|
appendmat : bool, optional
|
|
True (the default) to append the .mat extension to the end of the
|
|
given filename, if not already present.
|
|
format : {'5', '4'}, string, optional
|
|
'5' (the default) for MATLAB 5 and up (to 7.2),
|
|
'4' for MATLAB 4 .mat files.
|
|
long_field_names : bool, optional
|
|
False (the default) - maximum field name length in a structure is
|
|
31 characters which is the documented maximum length.
|
|
True - maximum field name length in a structure is 63 characters
|
|
which works for MATLAB 7.6+.
|
|
do_compression : bool, optional
|
|
Whether or not to compress matrices on write. Default is False.
|
|
oned_as : {'row', 'column'}, optional
|
|
If 'column', write 1-D NumPy arrays as column vectors.
|
|
If 'row', write 1-D NumPy arrays as row vectors.
|
|
|
|
Examples
|
|
--------
|
|
>>> from scipy.io import savemat
|
|
>>> a = np.arange(20)
|
|
>>> mdic = {"a": a, "label": "experiment"}
|
|
>>> mdic
|
|
{'a': array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
|
|
17, 18, 19]),
|
|
'label': 'experiment'}
|
|
>>> savemat("matlab_matrix.mat", mdic)
|
|
"""
|
|
with _open_file_context(file_name, appendmat, 'wb') as file_stream:
|
|
if format == '4':
|
|
if long_field_names:
|
|
raise ValueError("Long field names are not available for version 4 files")
|
|
MW = MatFile4Writer(file_stream, oned_as)
|
|
elif format == '5':
|
|
MW = MatFile5Writer(file_stream,
|
|
do_compression=do_compression,
|
|
unicode_strings=True,
|
|
long_field_names=long_field_names,
|
|
oned_as=oned_as)
|
|
else:
|
|
raise ValueError("Format should be '4' or '5'")
|
|
MW.put_variables(mdict)
|
|
|
|
|
|
@docfiller
|
|
def whosmat(file_name, appendmat=True, **kwargs):
|
|
"""
|
|
List variables inside a MATLAB file.
|
|
|
|
Parameters
|
|
----------
|
|
%(file_arg)s
|
|
%(append_arg)s
|
|
%(load_args)s
|
|
%(struct_arg)s
|
|
|
|
Returns
|
|
-------
|
|
variables : list of tuples
|
|
A list of tuples, where each tuple holds the matrix name (a string),
|
|
its shape (tuple of ints), and its data class (a string).
|
|
Possible data classes are: int8, uint8, int16, uint16, int32, uint32,
|
|
int64, uint64, single, double, cell, struct, object, char, sparse,
|
|
function, opaque, logical, unknown.
|
|
|
|
Notes
|
|
-----
|
|
v4 (Level 1.0), v6 and v7 to 7.2 matfiles are supported.
|
|
|
|
You will need an HDF5 python library to read matlab 7.3 format mat
|
|
files. Because SciPy does not supply one, we do not implement the
|
|
HDF5 / 7.3 interface here.
|
|
|
|
.. versionadded:: 0.12.0
|
|
|
|
"""
|
|
with _open_file_context(file_name, appendmat) as f:
|
|
ML, file_opened = mat_reader_factory(f, **kwargs)
|
|
variables = ML.list_variables()
|
|
return variables
|