Vehicle-Anti-Theft-Face-Rec.../venv/Lib/site-packages/sklearn/decomposition/tests/test_sparse_pca.py

224 lines
8.1 KiB
Python

# Author: Vlad Niculae
# License: BSD 3 clause
import sys
import pytest
import numpy as np
from sklearn.utils._testing import assert_array_almost_equal
from sklearn.utils._testing import assert_allclose
from sklearn.utils._testing import if_safe_multiprocessing_with_blas
from sklearn.decomposition import SparsePCA, MiniBatchSparsePCA, PCA
from sklearn.utils import check_random_state
def generate_toy_data(n_components, n_samples, image_size, random_state=None):
n_features = image_size[0] * image_size[1]
rng = check_random_state(random_state)
U = rng.randn(n_samples, n_components)
V = rng.randn(n_components, n_features)
centers = [(3, 3), (6, 7), (8, 1)]
sz = [1, 2, 1]
for k in range(n_components):
img = np.zeros(image_size)
xmin, xmax = centers[k][0] - sz[k], centers[k][0] + sz[k]
ymin, ymax = centers[k][1] - sz[k], centers[k][1] + sz[k]
img[xmin:xmax][:, ymin:ymax] = 1.0
V[k, :] = img.ravel()
# Y is defined by : Y = UV + noise
Y = np.dot(U, V)
Y += 0.1 * rng.randn(Y.shape[0], Y.shape[1]) # Add noise
return Y, U, V
# SparsePCA can be a bit slow. To avoid having test times go up, we
# test different aspects of the code in the same test
def test_correct_shapes():
rng = np.random.RandomState(0)
X = rng.randn(12, 10)
spca = SparsePCA(n_components=8, random_state=rng)
U = spca.fit_transform(X)
assert spca.components_.shape == (8, 10)
assert U.shape == (12, 8)
# test overcomplete decomposition
spca = SparsePCA(n_components=13, random_state=rng)
U = spca.fit_transform(X)
assert spca.components_.shape == (13, 10)
assert U.shape == (12, 13)
def test_fit_transform():
alpha = 1
rng = np.random.RandomState(0)
Y, _, _ = generate_toy_data(3, 10, (8, 8), random_state=rng) # wide array
spca_lars = SparsePCA(n_components=3, method='lars', alpha=alpha,
random_state=0)
spca_lars.fit(Y)
# Test that CD gives similar results
spca_lasso = SparsePCA(n_components=3, method='cd', random_state=0,
alpha=alpha)
spca_lasso.fit(Y)
assert_array_almost_equal(spca_lasso.components_, spca_lars.components_)
@if_safe_multiprocessing_with_blas
def test_fit_transform_parallel():
alpha = 1
rng = np.random.RandomState(0)
Y, _, _ = generate_toy_data(3, 10, (8, 8), random_state=rng) # wide array
spca_lars = SparsePCA(n_components=3, method='lars', alpha=alpha,
random_state=0)
spca_lars.fit(Y)
U1 = spca_lars.transform(Y)
# Test multiple CPUs
spca = SparsePCA(n_components=3, n_jobs=2, method='lars', alpha=alpha,
random_state=0).fit(Y)
U2 = spca.transform(Y)
assert not np.all(spca_lars.components_ == 0)
assert_array_almost_equal(U1, U2)
def test_transform_nan():
# Test that SparsePCA won't return NaN when there is 0 feature in all
# samples.
rng = np.random.RandomState(0)
Y, _, _ = generate_toy_data(3, 10, (8, 8), random_state=rng) # wide array
Y[:, 0] = 0
estimator = SparsePCA(n_components=8)
assert not np.any(np.isnan(estimator.fit_transform(Y)))
def test_fit_transform_tall():
rng = np.random.RandomState(0)
Y, _, _ = generate_toy_data(3, 65, (8, 8), random_state=rng) # tall array
spca_lars = SparsePCA(n_components=3, method='lars', random_state=rng)
U1 = spca_lars.fit_transform(Y)
spca_lasso = SparsePCA(n_components=3, method='cd', random_state=rng)
U2 = spca_lasso.fit(Y).transform(Y)
assert_array_almost_equal(U1, U2)
def test_initialization():
rng = np.random.RandomState(0)
U_init = rng.randn(5, 3)
V_init = rng.randn(3, 4)
model = SparsePCA(n_components=3, U_init=U_init, V_init=V_init, max_iter=0,
random_state=rng)
model.fit(rng.randn(5, 4))
assert_allclose(model.components_,
V_init / np.linalg.norm(V_init, axis=1)[:, None])
def test_mini_batch_correct_shapes():
rng = np.random.RandomState(0)
X = rng.randn(12, 10)
pca = MiniBatchSparsePCA(n_components=8, random_state=rng)
U = pca.fit_transform(X)
assert pca.components_.shape == (8, 10)
assert U.shape == (12, 8)
# test overcomplete decomposition
pca = MiniBatchSparsePCA(n_components=13, random_state=rng)
U = pca.fit_transform(X)
assert pca.components_.shape == (13, 10)
assert U.shape == (12, 13)
# XXX: test always skipped
@pytest.mark.skipif(True, reason="skipping mini_batch_fit_transform.")
def test_mini_batch_fit_transform():
alpha = 1
rng = np.random.RandomState(0)
Y, _, _ = generate_toy_data(3, 10, (8, 8), random_state=rng) # wide array
spca_lars = MiniBatchSparsePCA(n_components=3, random_state=0,
alpha=alpha).fit(Y)
U1 = spca_lars.transform(Y)
# Test multiple CPUs
if sys.platform == 'win32': # fake parallelism for win32
import joblib
_mp = joblib.parallel.multiprocessing
joblib.parallel.multiprocessing = None
try:
spca = MiniBatchSparsePCA(n_components=3, n_jobs=2, alpha=alpha,
random_state=0)
U2 = spca.fit(Y).transform(Y)
finally:
joblib.parallel.multiprocessing = _mp
else: # we can efficiently use parallelism
spca = MiniBatchSparsePCA(n_components=3, n_jobs=2, alpha=alpha,
random_state=0)
U2 = spca.fit(Y).transform(Y)
assert not np.all(spca_lars.components_ == 0)
assert_array_almost_equal(U1, U2)
# Test that CD gives similar results
spca_lasso = MiniBatchSparsePCA(n_components=3, method='cd', alpha=alpha,
random_state=0).fit(Y)
assert_array_almost_equal(spca_lasso.components_, spca_lars.components_)
def test_scaling_fit_transform():
alpha = 1
rng = np.random.RandomState(0)
Y, _, _ = generate_toy_data(3, 1000, (8, 8), random_state=rng)
spca_lars = SparsePCA(n_components=3, method='lars', alpha=alpha,
random_state=rng)
results_train = spca_lars.fit_transform(Y)
results_test = spca_lars.transform(Y[:10])
assert_allclose(results_train[0], results_test[0])
def test_pca_vs_spca():
rng = np.random.RandomState(0)
Y, _, _ = generate_toy_data(3, 1000, (8, 8), random_state=rng)
Z, _, _ = generate_toy_data(3, 10, (8, 8), random_state=rng)
spca = SparsePCA(alpha=0, ridge_alpha=0, n_components=2)
pca = PCA(n_components=2)
pca.fit(Y)
spca.fit(Y)
results_test_pca = pca.transform(Z)
results_test_spca = spca.transform(Z)
assert_allclose(np.abs(spca.components_.dot(pca.components_.T)),
np.eye(2), atol=1e-5)
results_test_pca *= np.sign(results_test_pca[0, :])
results_test_spca *= np.sign(results_test_spca[0, :])
assert_allclose(results_test_pca, results_test_spca)
@pytest.mark.parametrize("spca", [SparsePCA, MiniBatchSparsePCA])
def test_spca_deprecation_warning(spca):
rng = np.random.RandomState(0)
Y, _, _ = generate_toy_data(3, 10, (8, 8), random_state=rng)
warn_msg = "'normalize_components' has been deprecated in 0.22"
with pytest.warns(FutureWarning, match=warn_msg):
spca(normalize_components=True).fit(Y)
@pytest.mark.parametrize("spca", [SparsePCA, MiniBatchSparsePCA])
def test_spca_error_unormalized_components(spca):
rng = np.random.RandomState(0)
Y, _, _ = generate_toy_data(3, 10, (8, 8), random_state=rng)
err_msg = "normalize_components=False is not supported starting "
with pytest.raises(NotImplementedError, match=err_msg):
spca(normalize_components=False).fit(Y)
@pytest.mark.parametrize("SPCA", [SparsePCA, MiniBatchSparsePCA])
@pytest.mark.parametrize("n_components", [None, 3])
def test_spca_n_components_(SPCA, n_components):
rng = np.random.RandomState(0)
n_samples, n_features = 12, 10
X = rng.randn(n_samples, n_features)
model = SPCA(n_components=n_components).fit(X)
if n_components is not None:
assert model.n_components_ == n_components
else:
assert model.n_components_ == n_features