176 lines
5.3 KiB
Python
176 lines
5.3 KiB
Python
import pytest
|
|
|
|
import numpy as np
|
|
from numpy.testing import assert_allclose
|
|
|
|
from scipy.integrate import quad_vec
|
|
|
|
quadrature_params = pytest.mark.parametrize('quadrature',
|
|
[None, "gk15", "gk21", "trapz"])
|
|
|
|
|
|
@quadrature_params
|
|
def test_quad_vec_simple(quadrature):
|
|
n = np.arange(10)
|
|
f = lambda x: x**n
|
|
for epsabs in [0.1, 1e-3, 1e-6]:
|
|
if quadrature == 'trapz' and epsabs < 1e-4:
|
|
# slow: skip
|
|
continue
|
|
|
|
kwargs = dict(epsabs=epsabs, quadrature=quadrature)
|
|
|
|
exact = 2**(n+1)/(n + 1)
|
|
|
|
res, err = quad_vec(f, 0, 2, norm='max', **kwargs)
|
|
assert_allclose(res, exact, rtol=0, atol=epsabs)
|
|
|
|
res, err = quad_vec(f, 0, 2, norm='2', **kwargs)
|
|
assert np.linalg.norm(res - exact) < epsabs
|
|
|
|
res, err = quad_vec(f, 0, 2, norm='max', points=(0.5, 1.0), **kwargs)
|
|
assert_allclose(res, exact, rtol=0, atol=epsabs)
|
|
|
|
res, err, *rest = quad_vec(f, 0, 2, norm='max',
|
|
epsrel=1e-8,
|
|
full_output=True,
|
|
limit=10000,
|
|
**kwargs)
|
|
assert_allclose(res, exact, rtol=0, atol=epsabs)
|
|
|
|
|
|
@quadrature_params
|
|
def test_quad_vec_simple_inf(quadrature):
|
|
f = lambda x: 1 / (1 + np.float64(x)**2)
|
|
|
|
for epsabs in [0.1, 1e-3, 1e-6]:
|
|
if quadrature == 'trapz' and epsabs < 1e-4:
|
|
# slow: skip
|
|
continue
|
|
|
|
kwargs = dict(norm='max', epsabs=epsabs, quadrature=quadrature)
|
|
|
|
res, err = quad_vec(f, 0, np.inf, **kwargs)
|
|
assert_allclose(res, np.pi/2, rtol=0, atol=max(epsabs, err))
|
|
|
|
res, err = quad_vec(f, 0, -np.inf, **kwargs)
|
|
assert_allclose(res, -np.pi/2, rtol=0, atol=max(epsabs, err))
|
|
|
|
res, err = quad_vec(f, -np.inf, 0, **kwargs)
|
|
assert_allclose(res, np.pi/2, rtol=0, atol=max(epsabs, err))
|
|
|
|
res, err = quad_vec(f, np.inf, 0, **kwargs)
|
|
assert_allclose(res, -np.pi/2, rtol=0, atol=max(epsabs, err))
|
|
|
|
res, err = quad_vec(f, -np.inf, np.inf, **kwargs)
|
|
assert_allclose(res, np.pi, rtol=0, atol=max(epsabs, err))
|
|
|
|
res, err = quad_vec(f, np.inf, -np.inf, **kwargs)
|
|
assert_allclose(res, -np.pi, rtol=0, atol=max(epsabs, err))
|
|
|
|
res, err = quad_vec(f, np.inf, np.inf, **kwargs)
|
|
assert_allclose(res, 0, rtol=0, atol=max(epsabs, err))
|
|
|
|
res, err = quad_vec(f, -np.inf, -np.inf, **kwargs)
|
|
assert_allclose(res, 0, rtol=0, atol=max(epsabs, err))
|
|
|
|
res, err = quad_vec(f, 0, np.inf, points=(1.0, 2.0), **kwargs)
|
|
assert_allclose(res, np.pi/2, rtol=0, atol=max(epsabs, err))
|
|
|
|
f = lambda x: np.sin(x + 2) / (1 + x**2)
|
|
exact = np.pi / np.e * np.sin(2)
|
|
epsabs = 1e-5
|
|
|
|
res, err, info = quad_vec(f, -np.inf, np.inf, limit=1000, norm='max', epsabs=epsabs,
|
|
quadrature=quadrature, full_output=True)
|
|
assert info.status == 1
|
|
assert_allclose(res, exact, rtol=0, atol=max(epsabs, 1.5 * err))
|
|
|
|
|
|
def _lorenzian(x):
|
|
return 1 / (1 + x**2)
|
|
|
|
|
|
def test_quad_vec_pool():
|
|
from multiprocessing.dummy import Pool
|
|
|
|
f = _lorenzian
|
|
res, err = quad_vec(f, -np.inf, np.inf, norm='max', epsabs=1e-4, workers=4)
|
|
assert_allclose(res, np.pi, rtol=0, atol=1e-4)
|
|
|
|
with Pool(10) as pool:
|
|
f = lambda x: 1 / (1 + x**2)
|
|
res, err = quad_vec(f, -np.inf, np.inf, norm='max', epsabs=1e-4, workers=pool.map)
|
|
assert_allclose(res, np.pi, rtol=0, atol=1e-4)
|
|
|
|
|
|
@quadrature_params
|
|
def test_num_eval(quadrature):
|
|
def f(x):
|
|
count[0] += 1
|
|
return x**5
|
|
|
|
count = [0]
|
|
res = quad_vec(f, 0, 1, norm='max', full_output=True, quadrature=quadrature)
|
|
assert res[2].neval == count[0]
|
|
|
|
|
|
def test_info():
|
|
def f(x):
|
|
return np.ones((3, 2, 1))
|
|
|
|
res, err, info = quad_vec(f, 0, 1, norm='max', full_output=True)
|
|
|
|
assert info.success == True
|
|
assert info.status == 0
|
|
assert info.message == 'Target precision reached.'
|
|
assert info.neval > 0
|
|
assert info.intervals.shape[1] == 2
|
|
assert info.integrals.shape == (info.intervals.shape[0], 3, 2, 1)
|
|
assert info.errors.shape == (info.intervals.shape[0],)
|
|
|
|
|
|
def test_nan_inf():
|
|
def f_nan(x):
|
|
return np.nan
|
|
|
|
def f_inf(x):
|
|
return np.inf if x < 0.1 else 1/x
|
|
|
|
res, err, info = quad_vec(f_nan, 0, 1, full_output=True)
|
|
assert info.status == 3
|
|
|
|
res, err, info = quad_vec(f_inf, 0, 1, full_output=True)
|
|
assert info.status == 3
|
|
|
|
|
|
@pytest.mark.parametrize('a,b', [(0, 1), (0, np.inf), (np.inf, 0),
|
|
(-np.inf, np.inf), (np.inf, -np.inf)])
|
|
def test_points(a, b):
|
|
# Check that initial interval splitting is done according to
|
|
# `points`, by checking that consecutive sets of 15 point (for
|
|
# gk15) function evaluations lie between `points`
|
|
|
|
points = (0, 0.25, 0.5, 0.75, 1.0)
|
|
points += tuple(-x for x in points)
|
|
|
|
quadrature_points = 15
|
|
interval_sets = []
|
|
count = 0
|
|
|
|
def f(x):
|
|
nonlocal count
|
|
|
|
if count % quadrature_points == 0:
|
|
interval_sets.append(set())
|
|
|
|
count += 1
|
|
interval_sets[-1].add(float(x))
|
|
return 0.0
|
|
|
|
quad_vec(f, a, b, points=points, quadrature='gk15', limit=0)
|
|
|
|
# Check that all point sets lie in a single `points` interval
|
|
for p in interval_sets:
|
|
j = np.searchsorted(sorted(points), tuple(p))
|
|
assert np.all(j == j[0])
|