405 lines
13 KiB
Python
405 lines
13 KiB
Python
import numpy as np
|
|
import math
|
|
|
|
from matplotlib import cbook
|
|
from mpl_toolkits.axisartist.grid_finder import ExtremeFinderSimple
|
|
|
|
|
|
def select_step_degree(dv):
|
|
|
|
degree_limits_ = [1.5, 3, 7, 13, 20, 40, 70, 120, 270, 520]
|
|
degree_steps_ = [1, 2, 5, 10, 15, 30, 45, 90, 180, 360]
|
|
degree_factors = [1.] * len(degree_steps_)
|
|
|
|
minsec_limits_ = [1.5, 2.5, 3.5, 8, 11, 18, 25, 45]
|
|
minsec_steps_ = [1, 2, 3, 5, 10, 15, 20, 30]
|
|
|
|
minute_limits_ = np.array(minsec_limits_) / 60
|
|
minute_factors = [60.] * len(minute_limits_)
|
|
|
|
second_limits_ = np.array(minsec_limits_) / 3600
|
|
second_factors = [3600.] * len(second_limits_)
|
|
|
|
degree_limits = [*second_limits_, *minute_limits_, *degree_limits_]
|
|
degree_steps = [*minsec_steps_, *minsec_steps_, *degree_steps_]
|
|
degree_factors = [*second_factors, *minute_factors, *degree_factors]
|
|
|
|
n = np.searchsorted(degree_limits, dv)
|
|
step = degree_steps[n]
|
|
factor = degree_factors[n]
|
|
|
|
return step, factor
|
|
|
|
|
|
def select_step_hour(dv):
|
|
|
|
hour_limits_ = [1.5, 2.5, 3.5, 5, 7, 10, 15, 21, 36]
|
|
hour_steps_ = [1, 2, 3, 4, 6, 8, 12, 18, 24]
|
|
hour_factors = [1.] * len(hour_steps_)
|
|
|
|
minsec_limits_ = [1.5, 2.5, 3.5, 4.5, 5.5, 8, 11, 14, 18, 25, 45]
|
|
minsec_steps_ = [1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30]
|
|
|
|
minute_limits_ = np.array(minsec_limits_) / 60
|
|
minute_factors = [60.] * len(minute_limits_)
|
|
|
|
second_limits_ = np.array(minsec_limits_) / 3600
|
|
second_factors = [3600.] * len(second_limits_)
|
|
|
|
hour_limits = [*second_limits_, *minute_limits_, *hour_limits_]
|
|
hour_steps = [*minsec_steps_, *minsec_steps_, *hour_steps_]
|
|
hour_factors = [*second_factors, *minute_factors, *hour_factors]
|
|
|
|
n = np.searchsorted(hour_limits, dv)
|
|
step = hour_steps[n]
|
|
factor = hour_factors[n]
|
|
|
|
return step, factor
|
|
|
|
|
|
def select_step_sub(dv):
|
|
|
|
# subarcsec or degree
|
|
tmp = 10.**(int(math.log10(dv))-1.)
|
|
|
|
factor = 1./tmp
|
|
|
|
if 1.5*tmp >= dv:
|
|
step = 1
|
|
elif 3.*tmp >= dv:
|
|
step = 2
|
|
elif 7.*tmp >= dv:
|
|
step = 5
|
|
else:
|
|
step = 1
|
|
factor = 0.1*factor
|
|
|
|
return step, factor
|
|
|
|
|
|
def select_step(v1, v2, nv, hour=False, include_last=True,
|
|
threshold_factor=3600.):
|
|
|
|
if v1 > v2:
|
|
v1, v2 = v2, v1
|
|
|
|
dv = (v2 - v1) / nv
|
|
|
|
if hour:
|
|
_select_step = select_step_hour
|
|
cycle = 24.
|
|
else:
|
|
_select_step = select_step_degree
|
|
cycle = 360.
|
|
|
|
# for degree
|
|
if dv > 1 / threshold_factor:
|
|
step, factor = _select_step(dv)
|
|
else:
|
|
step, factor = select_step_sub(dv*threshold_factor)
|
|
|
|
factor = factor * threshold_factor
|
|
|
|
levs = np.arange(np.floor(v1 * factor / step),
|
|
np.ceil(v2 * factor / step) + 0.5,
|
|
dtype=int) * step
|
|
|
|
# n : number of valid levels. If there is a cycle, e.g., [0, 90, 180,
|
|
# 270, 360], the grid line needs to be extended from 0 to 360, so
|
|
# we need to return the whole array. However, the last level (360)
|
|
# needs to be ignored often. In this case, so we return n=4.
|
|
|
|
n = len(levs)
|
|
|
|
# we need to check the range of values
|
|
# for example, -90 to 90, 0 to 360,
|
|
|
|
if factor == 1. and levs[-1] >= levs[0] + cycle: # check for cycle
|
|
nv = int(cycle / step)
|
|
if include_last:
|
|
levs = levs[0] + np.arange(0, nv+1, 1) * step
|
|
else:
|
|
levs = levs[0] + np.arange(0, nv, 1) * step
|
|
|
|
n = len(levs)
|
|
|
|
return np.array(levs), n, factor
|
|
|
|
|
|
def select_step24(v1, v2, nv, include_last=True, threshold_factor=3600):
|
|
v1, v2 = v1 / 15, v2 / 15
|
|
levs, n, factor = select_step(v1, v2, nv, hour=True,
|
|
include_last=include_last,
|
|
threshold_factor=threshold_factor)
|
|
return levs * 15, n, factor
|
|
|
|
|
|
def select_step360(v1, v2, nv, include_last=True, threshold_factor=3600):
|
|
return select_step(v1, v2, nv, hour=False,
|
|
include_last=include_last,
|
|
threshold_factor=threshold_factor)
|
|
|
|
|
|
class LocatorBase:
|
|
@cbook._rename_parameter("3.3", "den", "nbins")
|
|
def __init__(self, nbins, include_last=True):
|
|
self.nbins = nbins
|
|
self._include_last = include_last
|
|
|
|
@cbook.deprecated("3.3", alternative="nbins")
|
|
@property
|
|
def den(self):
|
|
return self.nbins
|
|
|
|
@den.setter
|
|
def den(self, v):
|
|
self.nbins = v
|
|
|
|
def set_params(self, nbins=None):
|
|
if nbins is not None:
|
|
self.nbins = int(nbins)
|
|
|
|
|
|
class LocatorHMS(LocatorBase):
|
|
def __call__(self, v1, v2):
|
|
return select_step24(v1, v2, self.nbins, self._include_last)
|
|
|
|
|
|
class LocatorHM(LocatorBase):
|
|
def __call__(self, v1, v2):
|
|
return select_step24(v1, v2, self.nbins, self._include_last,
|
|
threshold_factor=60)
|
|
|
|
|
|
class LocatorH(LocatorBase):
|
|
def __call__(self, v1, v2):
|
|
return select_step24(v1, v2, self.nbins, self._include_last,
|
|
threshold_factor=1)
|
|
|
|
|
|
class LocatorDMS(LocatorBase):
|
|
def __call__(self, v1, v2):
|
|
return select_step360(v1, v2, self.nbins, self._include_last)
|
|
|
|
|
|
class LocatorDM(LocatorBase):
|
|
def __call__(self, v1, v2):
|
|
return select_step360(v1, v2, self.nbins, self._include_last,
|
|
threshold_factor=60)
|
|
|
|
|
|
class LocatorD(LocatorBase):
|
|
def __call__(self, v1, v2):
|
|
return select_step360(v1, v2, self.nbins, self._include_last,
|
|
threshold_factor=1)
|
|
|
|
|
|
class FormatterDMS:
|
|
deg_mark = r"^{\circ}"
|
|
min_mark = r"^{\prime}"
|
|
sec_mark = r"^{\prime\prime}"
|
|
|
|
fmt_d = "$%d" + deg_mark + "$"
|
|
fmt_ds = r"$%d.%s" + deg_mark + "$"
|
|
|
|
# %s for sign
|
|
fmt_d_m = r"$%s%d" + deg_mark + r"\,%02d" + min_mark + "$"
|
|
fmt_d_ms = r"$%s%d" + deg_mark + r"\,%02d.%s" + min_mark + "$"
|
|
|
|
fmt_d_m_partial = "$%s%d" + deg_mark + r"\,%02d" + min_mark + r"\,"
|
|
fmt_s_partial = "%02d" + sec_mark + "$"
|
|
fmt_ss_partial = "%02d.%s" + sec_mark + "$"
|
|
|
|
def _get_number_fraction(self, factor):
|
|
## check for fractional numbers
|
|
number_fraction = None
|
|
# check for 60
|
|
|
|
for threshold in [1, 60, 3600]:
|
|
if factor <= threshold:
|
|
break
|
|
|
|
d = factor // threshold
|
|
int_log_d = int(np.floor(np.log10(d)))
|
|
if 10**int_log_d == d and d != 1:
|
|
number_fraction = int_log_d
|
|
factor = factor // 10**int_log_d
|
|
return factor, number_fraction
|
|
|
|
return factor, number_fraction
|
|
|
|
def __call__(self, direction, factor, values):
|
|
if len(values) == 0:
|
|
return []
|
|
|
|
ss = np.sign(values)
|
|
signs = ["-" if v < 0 else "" for v in values]
|
|
|
|
factor, number_fraction = self._get_number_fraction(factor)
|
|
|
|
values = np.abs(values)
|
|
|
|
if number_fraction is not None:
|
|
values, frac_part = divmod(values, 10 ** number_fraction)
|
|
frac_fmt = "%%0%dd" % (number_fraction,)
|
|
frac_str = [frac_fmt % (f1,) for f1 in frac_part]
|
|
|
|
if factor == 1:
|
|
if number_fraction is None:
|
|
return [self.fmt_d % (s * int(v),) for s, v in zip(ss, values)]
|
|
else:
|
|
return [self.fmt_ds % (s * int(v), f1)
|
|
for s, v, f1 in zip(ss, values, frac_str)]
|
|
elif factor == 60:
|
|
deg_part, min_part = divmod(values, 60)
|
|
if number_fraction is None:
|
|
return [self.fmt_d_m % (s1, d1, m1)
|
|
for s1, d1, m1 in zip(signs, deg_part, min_part)]
|
|
else:
|
|
return [self.fmt_d_ms % (s, d1, m1, f1)
|
|
for s, d1, m1, f1
|
|
in zip(signs, deg_part, min_part, frac_str)]
|
|
|
|
elif factor == 3600:
|
|
if ss[-1] == -1:
|
|
inverse_order = True
|
|
values = values[::-1]
|
|
signs = signs[::-1]
|
|
else:
|
|
inverse_order = False
|
|
|
|
l_hm_old = ""
|
|
r = []
|
|
|
|
deg_part, min_part_ = divmod(values, 3600)
|
|
min_part, sec_part = divmod(min_part_, 60)
|
|
|
|
if number_fraction is None:
|
|
sec_str = [self.fmt_s_partial % (s1,) for s1 in sec_part]
|
|
else:
|
|
sec_str = [self.fmt_ss_partial % (s1, f1)
|
|
for s1, f1 in zip(sec_part, frac_str)]
|
|
|
|
for s, d1, m1, s1 in zip(signs, deg_part, min_part, sec_str):
|
|
l_hm = self.fmt_d_m_partial % (s, d1, m1)
|
|
if l_hm != l_hm_old:
|
|
l_hm_old = l_hm
|
|
l = l_hm + s1
|
|
else:
|
|
l = "$" + s + s1
|
|
r.append(l)
|
|
|
|
if inverse_order:
|
|
return r[::-1]
|
|
else:
|
|
return r
|
|
|
|
else: # factor > 3600.
|
|
return [r"$%s^{\circ}$" % (str(v),) for v in ss*values]
|
|
|
|
|
|
class FormatterHMS(FormatterDMS):
|
|
deg_mark = r"^\mathrm{h}"
|
|
min_mark = r"^\mathrm{m}"
|
|
sec_mark = r"^\mathrm{s}"
|
|
|
|
fmt_d = "$%d" + deg_mark + "$"
|
|
fmt_ds = r"$%d.%s" + deg_mark + "$"
|
|
|
|
# %s for sign
|
|
fmt_d_m = r"$%s%d" + deg_mark + r"\,%02d" + min_mark+"$"
|
|
fmt_d_ms = r"$%s%d" + deg_mark + r"\,%02d.%s" + min_mark+"$"
|
|
|
|
fmt_d_m_partial = "$%s%d" + deg_mark + r"\,%02d" + min_mark + r"\,"
|
|
fmt_s_partial = "%02d" + sec_mark + "$"
|
|
fmt_ss_partial = "%02d.%s" + sec_mark + "$"
|
|
|
|
def __call__(self, direction, factor, values): # hour
|
|
return super().__call__(direction, factor, np.asarray(values) / 15)
|
|
|
|
|
|
class ExtremeFinderCycle(ExtremeFinderSimple):
|
|
# docstring inherited
|
|
|
|
def __init__(self, nx, ny,
|
|
lon_cycle=360., lat_cycle=None,
|
|
lon_minmax=None, lat_minmax=(-90, 90)):
|
|
"""
|
|
This subclass handles the case where one or both coordinates should be
|
|
taken modulo 360, or be restricted to not exceed a specific range.
|
|
|
|
Parameters
|
|
----------
|
|
nx, ny : int
|
|
The number of samples in each direction.
|
|
|
|
lon_cycle, lat_cycle : 360 or None
|
|
If not None, values in the corresponding direction are taken modulo
|
|
*lon_cycle* or *lat_cycle*; in theory this can be any number but
|
|
the implementation actually assumes that it is 360 (if not None);
|
|
other values give nonsensical results.
|
|
|
|
This is done by "unwrapping" the transformed grid coordinates so
|
|
that jumps are less than a half-cycle; then normalizing the span to
|
|
no more than a full cycle.
|
|
|
|
For example, if values are in the union of the [0, 2] and
|
|
[358, 360] intervals (typically, angles measured modulo 360), the
|
|
values in the second interval are normalized to [-2, 0] instead so
|
|
that the values now cover [-2, 2]. If values are in a range of
|
|
[5, 1000], this gets normalized to [5, 365].
|
|
|
|
lon_minmax, lat_minmax : (float, float) or None
|
|
If not None, the computed bounding box is clipped to the given
|
|
range in the corresponding direction.
|
|
"""
|
|
self.nx, self.ny = nx, ny
|
|
self.lon_cycle, self.lat_cycle = lon_cycle, lat_cycle
|
|
self.lon_minmax = lon_minmax
|
|
self.lat_minmax = lat_minmax
|
|
|
|
def __call__(self, transform_xy, x1, y1, x2, y2):
|
|
# docstring inherited
|
|
x, y = np.meshgrid(
|
|
np.linspace(x1, x2, self.nx), np.linspace(y1, y2, self.ny))
|
|
lon, lat = transform_xy(np.ravel(x), np.ravel(y))
|
|
|
|
# iron out jumps, but algorithm should be improved.
|
|
# This is just naive way of doing and my fail for some cases.
|
|
# Consider replacing this with numpy.unwrap
|
|
# We are ignoring invalid warnings. They are triggered when
|
|
# comparing arrays with NaNs using > We are already handling
|
|
# that correctly using np.nanmin and np.nanmax
|
|
with np.errstate(invalid='ignore'):
|
|
if self.lon_cycle is not None:
|
|
lon0 = np.nanmin(lon)
|
|
lon -= 360. * ((lon - lon0) > 180.)
|
|
if self.lat_cycle is not None:
|
|
lat0 = np.nanmin(lat)
|
|
lat -= 360. * ((lat - lat0) > 180.)
|
|
|
|
lon_min, lon_max = np.nanmin(lon), np.nanmax(lon)
|
|
lat_min, lat_max = np.nanmin(lat), np.nanmax(lat)
|
|
|
|
lon_min, lon_max, lat_min, lat_max = \
|
|
self._add_pad(lon_min, lon_max, lat_min, lat_max)
|
|
|
|
# check cycle
|
|
if self.lon_cycle:
|
|
lon_max = min(lon_max, lon_min + self.lon_cycle)
|
|
if self.lat_cycle:
|
|
lat_max = min(lat_max, lat_min + self.lat_cycle)
|
|
|
|
if self.lon_minmax is not None:
|
|
min0 = self.lon_minmax[0]
|
|
lon_min = max(min0, lon_min)
|
|
max0 = self.lon_minmax[1]
|
|
lon_max = min(max0, lon_max)
|
|
|
|
if self.lat_minmax is not None:
|
|
min0 = self.lat_minmax[0]
|
|
lat_min = max(min0, lat_min)
|
|
max0 = self.lat_minmax[1]
|
|
lat_max = min(max0, lat_max)
|
|
|
|
return lon_min, lon_max, lat_min, lat_max
|