158 lines
4.9 KiB
Python
158 lines
4.9 KiB
Python
"""
|
|
The :mod:`sklearn.metrics` module includes score functions, performance metrics
|
|
and pairwise metrics and distance computations.
|
|
"""
|
|
|
|
|
|
from ._ranking import auc
|
|
from ._ranking import average_precision_score
|
|
from ._ranking import coverage_error
|
|
from ._ranking import dcg_score
|
|
from ._ranking import label_ranking_average_precision_score
|
|
from ._ranking import label_ranking_loss
|
|
from ._ranking import ndcg_score
|
|
from ._ranking import precision_recall_curve
|
|
from ._ranking import roc_auc_score
|
|
from ._ranking import roc_curve
|
|
|
|
from ._classification import accuracy_score
|
|
from ._classification import balanced_accuracy_score
|
|
from ._classification import classification_report
|
|
from ._classification import cohen_kappa_score
|
|
from ._classification import confusion_matrix
|
|
from ._classification import f1_score
|
|
from ._classification import fbeta_score
|
|
from ._classification import hamming_loss
|
|
from ._classification import hinge_loss
|
|
from ._classification import jaccard_score
|
|
from ._classification import log_loss
|
|
from ._classification import matthews_corrcoef
|
|
from ._classification import precision_recall_fscore_support
|
|
from ._classification import precision_score
|
|
from ._classification import recall_score
|
|
from ._classification import zero_one_loss
|
|
from ._classification import brier_score_loss
|
|
from ._classification import multilabel_confusion_matrix
|
|
|
|
from . import cluster
|
|
from .cluster import adjusted_mutual_info_score
|
|
from .cluster import adjusted_rand_score
|
|
from .cluster import completeness_score
|
|
from .cluster import consensus_score
|
|
from .cluster import homogeneity_completeness_v_measure
|
|
from .cluster import homogeneity_score
|
|
from .cluster import mutual_info_score
|
|
from .cluster import normalized_mutual_info_score
|
|
from .cluster import fowlkes_mallows_score
|
|
from .cluster import silhouette_samples
|
|
from .cluster import silhouette_score
|
|
from .cluster import calinski_harabasz_score
|
|
from .cluster import v_measure_score
|
|
from .cluster import davies_bouldin_score
|
|
|
|
from .pairwise import euclidean_distances
|
|
from .pairwise import nan_euclidean_distances
|
|
from .pairwise import pairwise_distances
|
|
from .pairwise import pairwise_distances_argmin
|
|
from .pairwise import pairwise_distances_argmin_min
|
|
from .pairwise import pairwise_kernels
|
|
from .pairwise import pairwise_distances_chunked
|
|
|
|
from ._regression import explained_variance_score
|
|
from ._regression import max_error
|
|
from ._regression import mean_absolute_error
|
|
from ._regression import mean_squared_error
|
|
from ._regression import mean_squared_log_error
|
|
from ._regression import median_absolute_error
|
|
from ._regression import r2_score
|
|
from ._regression import mean_tweedie_deviance
|
|
from ._regression import mean_poisson_deviance
|
|
from ._regression import mean_gamma_deviance
|
|
|
|
|
|
from ._scorer import check_scoring
|
|
from ._scorer import make_scorer
|
|
from ._scorer import SCORERS
|
|
from ._scorer import get_scorer
|
|
|
|
from ._plot.roc_curve import plot_roc_curve
|
|
from ._plot.roc_curve import RocCurveDisplay
|
|
from ._plot.precision_recall_curve import plot_precision_recall_curve
|
|
from ._plot.precision_recall_curve import PrecisionRecallDisplay
|
|
|
|
from ._plot.confusion_matrix import plot_confusion_matrix
|
|
from ._plot.confusion_matrix import ConfusionMatrixDisplay
|
|
|
|
|
|
__all__ = [
|
|
'accuracy_score',
|
|
'adjusted_mutual_info_score',
|
|
'adjusted_rand_score',
|
|
'auc',
|
|
'average_precision_score',
|
|
'balanced_accuracy_score',
|
|
'calinski_harabasz_score',
|
|
'check_scoring',
|
|
'classification_report',
|
|
'cluster',
|
|
'cohen_kappa_score',
|
|
'completeness_score',
|
|
'ConfusionMatrixDisplay',
|
|
'confusion_matrix',
|
|
'consensus_score',
|
|
'coverage_error',
|
|
'dcg_score',
|
|
'davies_bouldin_score',
|
|
'euclidean_distances',
|
|
'explained_variance_score',
|
|
'f1_score',
|
|
'fbeta_score',
|
|
'fowlkes_mallows_score',
|
|
'get_scorer',
|
|
'hamming_loss',
|
|
'hinge_loss',
|
|
'homogeneity_completeness_v_measure',
|
|
'homogeneity_score',
|
|
'jaccard_score',
|
|
'label_ranking_average_precision_score',
|
|
'label_ranking_loss',
|
|
'log_loss',
|
|
'make_scorer',
|
|
'nan_euclidean_distances',
|
|
'matthews_corrcoef',
|
|
'max_error',
|
|
'mean_absolute_error',
|
|
'mean_squared_error',
|
|
'mean_squared_log_error',
|
|
'mean_poisson_deviance',
|
|
'mean_gamma_deviance',
|
|
'mean_tweedie_deviance',
|
|
'median_absolute_error',
|
|
'multilabel_confusion_matrix',
|
|
'mutual_info_score',
|
|
'ndcg_score',
|
|
'normalized_mutual_info_score',
|
|
'pairwise_distances',
|
|
'pairwise_distances_argmin',
|
|
'pairwise_distances_argmin_min',
|
|
'pairwise_distances_chunked',
|
|
'pairwise_kernels',
|
|
'plot_confusion_matrix',
|
|
'plot_precision_recall_curve',
|
|
'plot_roc_curve',
|
|
'PrecisionRecallDisplay',
|
|
'precision_recall_curve',
|
|
'precision_recall_fscore_support',
|
|
'precision_score',
|
|
'r2_score',
|
|
'recall_score',
|
|
'RocCurveDisplay',
|
|
'roc_auc_score',
|
|
'roc_curve',
|
|
'SCORERS',
|
|
'silhouette_samples',
|
|
'silhouette_score',
|
|
'v_measure_score',
|
|
'zero_one_loss',
|
|
'brier_score_loss',
|
|
]
|