620 lines
22 KiB
Python
620 lines
22 KiB
Python
"""
|
|
Generalized Linear Models.
|
|
"""
|
|
|
|
# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>
|
|
# Fabian Pedregosa <fabian.pedregosa@inria.fr>
|
|
# Olivier Grisel <olivier.grisel@ensta.org>
|
|
# Vincent Michel <vincent.michel@inria.fr>
|
|
# Peter Prettenhofer <peter.prettenhofer@gmail.com>
|
|
# Mathieu Blondel <mathieu@mblondel.org>
|
|
# Lars Buitinck
|
|
# Maryan Morel <maryan.morel@polytechnique.edu>
|
|
# Giorgio Patrini <giorgio.patrini@anu.edu.au>
|
|
# License: BSD 3 clause
|
|
|
|
from abc import ABCMeta, abstractmethod
|
|
import numbers
|
|
import warnings
|
|
|
|
import numpy as np
|
|
import scipy.sparse as sp
|
|
from scipy import linalg
|
|
from scipy import sparse
|
|
from scipy.special import expit
|
|
from joblib import Parallel, delayed
|
|
|
|
from ..base import (BaseEstimator, ClassifierMixin, RegressorMixin,
|
|
MultiOutputMixin)
|
|
from ..utils import check_array
|
|
from ..utils.validation import FLOAT_DTYPES
|
|
from ..utils.validation import _deprecate_positional_args
|
|
from ..utils import check_random_state
|
|
from ..utils.extmath import safe_sparse_dot
|
|
from ..utils.sparsefuncs import mean_variance_axis, inplace_column_scale
|
|
from ..utils.fixes import sparse_lsqr
|
|
from ..utils._seq_dataset import ArrayDataset32, CSRDataset32
|
|
from ..utils._seq_dataset import ArrayDataset64, CSRDataset64
|
|
from ..utils.validation import check_is_fitted, _check_sample_weight
|
|
from ..preprocessing import normalize as f_normalize
|
|
|
|
# TODO: bayesian_ridge_regression and bayesian_regression_ard
|
|
# should be squashed into its respective objects.
|
|
|
|
SPARSE_INTERCEPT_DECAY = 0.01
|
|
# For sparse data intercept updates are scaled by this decay factor to avoid
|
|
# intercept oscillation.
|
|
|
|
|
|
def make_dataset(X, y, sample_weight, random_state=None):
|
|
"""Create ``Dataset`` abstraction for sparse and dense inputs.
|
|
|
|
This also returns the ``intercept_decay`` which is different
|
|
for sparse datasets.
|
|
|
|
Parameters
|
|
----------
|
|
X : array_like, shape (n_samples, n_features)
|
|
Training data
|
|
|
|
y : array_like, shape (n_samples, )
|
|
Target values.
|
|
|
|
sample_weight : numpy array of shape (n_samples,)
|
|
The weight of each sample
|
|
|
|
random_state : int, RandomState instance or None (default)
|
|
Determines random number generation for dataset shuffling and noise.
|
|
Pass an int for reproducible output across multiple function calls.
|
|
See :term:`Glossary <random_state>`.
|
|
|
|
Returns
|
|
-------
|
|
dataset
|
|
The ``Dataset`` abstraction
|
|
intercept_decay
|
|
The intercept decay
|
|
"""
|
|
|
|
rng = check_random_state(random_state)
|
|
# seed should never be 0 in SequentialDataset64
|
|
seed = rng.randint(1, np.iinfo(np.int32).max)
|
|
|
|
if X.dtype == np.float32:
|
|
CSRData = CSRDataset32
|
|
ArrayData = ArrayDataset32
|
|
else:
|
|
CSRData = CSRDataset64
|
|
ArrayData = ArrayDataset64
|
|
|
|
if sp.issparse(X):
|
|
dataset = CSRData(X.data, X.indptr, X.indices, y, sample_weight,
|
|
seed=seed)
|
|
intercept_decay = SPARSE_INTERCEPT_DECAY
|
|
else:
|
|
X = np.ascontiguousarray(X)
|
|
dataset = ArrayData(X, y, sample_weight, seed=seed)
|
|
intercept_decay = 1.0
|
|
|
|
return dataset, intercept_decay
|
|
|
|
|
|
def _preprocess_data(X, y, fit_intercept, normalize=False, copy=True,
|
|
sample_weight=None, return_mean=False, check_input=True):
|
|
"""Center and scale data.
|
|
|
|
Centers data to have mean zero along axis 0. If fit_intercept=False or if
|
|
the X is a sparse matrix, no centering is done, but normalization can still
|
|
be applied. The function returns the statistics necessary to reconstruct
|
|
the input data, which are X_offset, y_offset, X_scale, such that the output
|
|
|
|
X = (X - X_offset) / X_scale
|
|
|
|
X_scale is the L2 norm of X - X_offset. If sample_weight is not None,
|
|
then the weighted mean of X and y is zero, and not the mean itself. If
|
|
return_mean=True, the mean, eventually weighted, is returned, independently
|
|
of whether X was centered (option used for optimization with sparse data in
|
|
coordinate_descend).
|
|
|
|
This is here because nearly all linear models will want their data to be
|
|
centered. This function also systematically makes y consistent with X.dtype
|
|
"""
|
|
if isinstance(sample_weight, numbers.Number):
|
|
sample_weight = None
|
|
if sample_weight is not None:
|
|
sample_weight = np.asarray(sample_weight)
|
|
|
|
if check_input:
|
|
X = check_array(X, copy=copy, accept_sparse=['csr', 'csc'],
|
|
dtype=FLOAT_DTYPES)
|
|
elif copy:
|
|
if sp.issparse(X):
|
|
X = X.copy()
|
|
else:
|
|
X = X.copy(order='K')
|
|
|
|
y = np.asarray(y, dtype=X.dtype)
|
|
|
|
if fit_intercept:
|
|
if sp.issparse(X):
|
|
X_offset, X_var = mean_variance_axis(X, axis=0)
|
|
if not return_mean:
|
|
X_offset[:] = X.dtype.type(0)
|
|
|
|
if normalize:
|
|
|
|
# TODO: f_normalize could be used here as well but the function
|
|
# inplace_csr_row_normalize_l2 must be changed such that it
|
|
# can return also the norms computed internally
|
|
|
|
# transform variance to norm in-place
|
|
X_var *= X.shape[0]
|
|
X_scale = np.sqrt(X_var, X_var)
|
|
del X_var
|
|
X_scale[X_scale == 0] = 1
|
|
inplace_column_scale(X, 1. / X_scale)
|
|
else:
|
|
X_scale = np.ones(X.shape[1], dtype=X.dtype)
|
|
|
|
else:
|
|
X_offset = np.average(X, axis=0, weights=sample_weight)
|
|
X -= X_offset
|
|
if normalize:
|
|
X, X_scale = f_normalize(X, axis=0, copy=False,
|
|
return_norm=True)
|
|
else:
|
|
X_scale = np.ones(X.shape[1], dtype=X.dtype)
|
|
y_offset = np.average(y, axis=0, weights=sample_weight)
|
|
y = y - y_offset
|
|
else:
|
|
X_offset = np.zeros(X.shape[1], dtype=X.dtype)
|
|
X_scale = np.ones(X.shape[1], dtype=X.dtype)
|
|
if y.ndim == 1:
|
|
y_offset = X.dtype.type(0)
|
|
else:
|
|
y_offset = np.zeros(y.shape[1], dtype=X.dtype)
|
|
|
|
return X, y, X_offset, y_offset, X_scale
|
|
|
|
|
|
# TODO: _rescale_data should be factored into _preprocess_data.
|
|
# Currently, the fact that sag implements its own way to deal with
|
|
# sample_weight makes the refactoring tricky.
|
|
|
|
def _rescale_data(X, y, sample_weight):
|
|
"""Rescale data sample-wise by square root of sample_weight.
|
|
|
|
For many linear models, this enables easy support for sample_weight.
|
|
|
|
Returns
|
|
-------
|
|
X_rescaled : {array-like, sparse matrix}
|
|
|
|
y_rescaled : {array-like, sparse matrix}
|
|
"""
|
|
n_samples = X.shape[0]
|
|
sample_weight = np.asarray(sample_weight)
|
|
if sample_weight.ndim == 0:
|
|
sample_weight = np.full(n_samples, sample_weight,
|
|
dtype=sample_weight.dtype)
|
|
sample_weight = np.sqrt(sample_weight)
|
|
sw_matrix = sparse.dia_matrix((sample_weight, 0),
|
|
shape=(n_samples, n_samples))
|
|
X = safe_sparse_dot(sw_matrix, X)
|
|
y = safe_sparse_dot(sw_matrix, y)
|
|
return X, y
|
|
|
|
|
|
class LinearModel(BaseEstimator, metaclass=ABCMeta):
|
|
"""Base class for Linear Models"""
|
|
|
|
@abstractmethod
|
|
def fit(self, X, y):
|
|
"""Fit model."""
|
|
|
|
def _decision_function(self, X):
|
|
check_is_fitted(self)
|
|
|
|
X = check_array(X, accept_sparse=['csr', 'csc', 'coo'])
|
|
return safe_sparse_dot(X, self.coef_.T,
|
|
dense_output=True) + self.intercept_
|
|
|
|
def predict(self, X):
|
|
"""
|
|
Predict using the linear model.
|
|
|
|
Parameters
|
|
----------
|
|
X : array_like or sparse matrix, shape (n_samples, n_features)
|
|
Samples.
|
|
|
|
Returns
|
|
-------
|
|
C : array, shape (n_samples,)
|
|
Returns predicted values.
|
|
"""
|
|
return self._decision_function(X)
|
|
|
|
_preprocess_data = staticmethod(_preprocess_data)
|
|
|
|
def _set_intercept(self, X_offset, y_offset, X_scale):
|
|
"""Set the intercept_
|
|
"""
|
|
if self.fit_intercept:
|
|
self.coef_ = self.coef_ / X_scale
|
|
self.intercept_ = y_offset - np.dot(X_offset, self.coef_.T)
|
|
else:
|
|
self.intercept_ = 0.
|
|
|
|
def _more_tags(self):
|
|
return {'requires_y': True}
|
|
|
|
|
|
# XXX Should this derive from LinearModel? It should be a mixin, not an ABC.
|
|
# Maybe the n_features checking can be moved to LinearModel.
|
|
class LinearClassifierMixin(ClassifierMixin):
|
|
"""Mixin for linear classifiers.
|
|
|
|
Handles prediction for sparse and dense X.
|
|
"""
|
|
|
|
def decision_function(self, X):
|
|
"""
|
|
Predict confidence scores for samples.
|
|
|
|
The confidence score for a sample is the signed distance of that
|
|
sample to the hyperplane.
|
|
|
|
Parameters
|
|
----------
|
|
X : array_like or sparse matrix, shape (n_samples, n_features)
|
|
Samples.
|
|
|
|
Returns
|
|
-------
|
|
array, shape=(n_samples,) if n_classes == 2 else (n_samples, n_classes)
|
|
Confidence scores per (sample, class) combination. In the binary
|
|
case, confidence score for self.classes_[1] where >0 means this
|
|
class would be predicted.
|
|
"""
|
|
check_is_fitted(self)
|
|
|
|
X = check_array(X, accept_sparse='csr')
|
|
|
|
n_features = self.coef_.shape[1]
|
|
if X.shape[1] != n_features:
|
|
raise ValueError("X has %d features per sample; expecting %d"
|
|
% (X.shape[1], n_features))
|
|
|
|
scores = safe_sparse_dot(X, self.coef_.T,
|
|
dense_output=True) + self.intercept_
|
|
return scores.ravel() if scores.shape[1] == 1 else scores
|
|
|
|
def predict(self, X):
|
|
"""
|
|
Predict class labels for samples in X.
|
|
|
|
Parameters
|
|
----------
|
|
X : array_like or sparse matrix, shape (n_samples, n_features)
|
|
Samples.
|
|
|
|
Returns
|
|
-------
|
|
C : array, shape [n_samples]
|
|
Predicted class label per sample.
|
|
"""
|
|
scores = self.decision_function(X)
|
|
if len(scores.shape) == 1:
|
|
indices = (scores > 0).astype(np.int)
|
|
else:
|
|
indices = scores.argmax(axis=1)
|
|
return self.classes_[indices]
|
|
|
|
def _predict_proba_lr(self, X):
|
|
"""Probability estimation for OvR logistic regression.
|
|
|
|
Positive class probabilities are computed as
|
|
1. / (1. + np.exp(-self.decision_function(X)));
|
|
multiclass is handled by normalizing that over all classes.
|
|
"""
|
|
prob = self.decision_function(X)
|
|
expit(prob, out=prob)
|
|
if prob.ndim == 1:
|
|
return np.vstack([1 - prob, prob]).T
|
|
else:
|
|
# OvR normalization, like LibLinear's predict_probability
|
|
prob /= prob.sum(axis=1).reshape((prob.shape[0], -1))
|
|
return prob
|
|
|
|
|
|
class SparseCoefMixin:
|
|
"""Mixin for converting coef_ to and from CSR format.
|
|
|
|
L1-regularizing estimators should inherit this.
|
|
"""
|
|
|
|
def densify(self):
|
|
"""
|
|
Convert coefficient matrix to dense array format.
|
|
|
|
Converts the ``coef_`` member (back) to a numpy.ndarray. This is the
|
|
default format of ``coef_`` and is required for fitting, so calling
|
|
this method is only required on models that have previously been
|
|
sparsified; otherwise, it is a no-op.
|
|
|
|
Returns
|
|
-------
|
|
self
|
|
Fitted estimator.
|
|
"""
|
|
msg = "Estimator, %(name)s, must be fitted before densifying."
|
|
check_is_fitted(self, msg=msg)
|
|
if sp.issparse(self.coef_):
|
|
self.coef_ = self.coef_.toarray()
|
|
return self
|
|
|
|
def sparsify(self):
|
|
"""
|
|
Convert coefficient matrix to sparse format.
|
|
|
|
Converts the ``coef_`` member to a scipy.sparse matrix, which for
|
|
L1-regularized models can be much more memory- and storage-efficient
|
|
than the usual numpy.ndarray representation.
|
|
|
|
The ``intercept_`` member is not converted.
|
|
|
|
Returns
|
|
-------
|
|
self
|
|
Fitted estimator.
|
|
|
|
Notes
|
|
-----
|
|
For non-sparse models, i.e. when there are not many zeros in ``coef_``,
|
|
this may actually *increase* memory usage, so use this method with
|
|
care. A rule of thumb is that the number of zero elements, which can
|
|
be computed with ``(coef_ == 0).sum()``, must be more than 50% for this
|
|
to provide significant benefits.
|
|
|
|
After calling this method, further fitting with the partial_fit
|
|
method (if any) will not work until you call densify.
|
|
"""
|
|
msg = "Estimator, %(name)s, must be fitted before sparsifying."
|
|
check_is_fitted(self, msg=msg)
|
|
self.coef_ = sp.csr_matrix(self.coef_)
|
|
return self
|
|
|
|
|
|
class LinearRegression(MultiOutputMixin, RegressorMixin, LinearModel):
|
|
"""
|
|
Ordinary least squares Linear Regression.
|
|
|
|
LinearRegression fits a linear model with coefficients w = (w1, ..., wp)
|
|
to minimize the residual sum of squares between the observed targets in
|
|
the dataset, and the targets predicted by the linear approximation.
|
|
|
|
Parameters
|
|
----------
|
|
fit_intercept : bool, default=True
|
|
Whether to calculate the intercept for this model. If set
|
|
to False, no intercept will be used in calculations
|
|
(i.e. data is expected to be centered).
|
|
|
|
normalize : bool, default=False
|
|
This parameter is ignored when ``fit_intercept`` is set to False.
|
|
If True, the regressors X will be normalized before regression by
|
|
subtracting the mean and dividing by the l2-norm.
|
|
If you wish to standardize, please use
|
|
:class:`sklearn.preprocessing.StandardScaler` before calling ``fit`` on
|
|
an estimator with ``normalize=False``.
|
|
|
|
copy_X : bool, default=True
|
|
If True, X will be copied; else, it may be overwritten.
|
|
|
|
n_jobs : int, default=None
|
|
The number of jobs to use for the computation. This will only provide
|
|
speedup for n_targets > 1 and sufficient large problems.
|
|
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
|
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
|
for more details.
|
|
|
|
Attributes
|
|
----------
|
|
coef_ : array of shape (n_features, ) or (n_targets, n_features)
|
|
Estimated coefficients for the linear regression problem.
|
|
If multiple targets are passed during the fit (y 2D), this
|
|
is a 2D array of shape (n_targets, n_features), while if only
|
|
one target is passed, this is a 1D array of length n_features.
|
|
|
|
rank_ : int
|
|
Rank of matrix `X`. Only available when `X` is dense.
|
|
|
|
singular_ : array of shape (min(X, y),)
|
|
Singular values of `X`. Only available when `X` is dense.
|
|
|
|
intercept_ : float or array of shape (n_targets,)
|
|
Independent term in the linear model. Set to 0.0 if
|
|
`fit_intercept = False`.
|
|
|
|
See Also
|
|
--------
|
|
sklearn.linear_model.Ridge : Ridge regression addresses some of the
|
|
problems of Ordinary Least Squares by imposing a penalty on the
|
|
size of the coefficients with l2 regularization.
|
|
sklearn.linear_model.Lasso : The Lasso is a linear model that estimates
|
|
sparse coefficients with l1 regularization.
|
|
sklearn.linear_model.ElasticNet : Elastic-Net is a linear regression
|
|
model trained with both l1 and l2 -norm regularization of the
|
|
coefficients.
|
|
|
|
Notes
|
|
-----
|
|
From the implementation point of view, this is just plain Ordinary
|
|
Least Squares (scipy.linalg.lstsq) wrapped as a predictor object.
|
|
|
|
Examples
|
|
--------
|
|
>>> import numpy as np
|
|
>>> from sklearn.linear_model import LinearRegression
|
|
>>> X = np.array([[1, 1], [1, 2], [2, 2], [2, 3]])
|
|
>>> # y = 1 * x_0 + 2 * x_1 + 3
|
|
>>> y = np.dot(X, np.array([1, 2])) + 3
|
|
>>> reg = LinearRegression().fit(X, y)
|
|
>>> reg.score(X, y)
|
|
1.0
|
|
>>> reg.coef_
|
|
array([1., 2.])
|
|
>>> reg.intercept_
|
|
3.0000...
|
|
>>> reg.predict(np.array([[3, 5]]))
|
|
array([16.])
|
|
"""
|
|
@_deprecate_positional_args
|
|
def __init__(self, *, fit_intercept=True, normalize=False, copy_X=True,
|
|
n_jobs=None):
|
|
self.fit_intercept = fit_intercept
|
|
self.normalize = normalize
|
|
self.copy_X = copy_X
|
|
self.n_jobs = n_jobs
|
|
|
|
def fit(self, X, y, sample_weight=None):
|
|
"""
|
|
Fit linear model.
|
|
|
|
Parameters
|
|
----------
|
|
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
|
Training data
|
|
|
|
y : array-like of shape (n_samples,) or (n_samples, n_targets)
|
|
Target values. Will be cast to X's dtype if necessary
|
|
|
|
sample_weight : array-like of shape (n_samples,), default=None
|
|
Individual weights for each sample
|
|
|
|
.. versionadded:: 0.17
|
|
parameter *sample_weight* support to LinearRegression.
|
|
|
|
Returns
|
|
-------
|
|
self : returns an instance of self.
|
|
"""
|
|
|
|
n_jobs_ = self.n_jobs
|
|
X, y = self._validate_data(X, y, accept_sparse=['csr', 'csc', 'coo'],
|
|
y_numeric=True, multi_output=True)
|
|
|
|
if sample_weight is not None:
|
|
sample_weight = _check_sample_weight(sample_weight, X,
|
|
dtype=X.dtype)
|
|
|
|
X, y, X_offset, y_offset, X_scale = self._preprocess_data(
|
|
X, y, fit_intercept=self.fit_intercept, normalize=self.normalize,
|
|
copy=self.copy_X, sample_weight=sample_weight,
|
|
return_mean=True)
|
|
|
|
if sample_weight is not None:
|
|
# Sample weight can be implemented via a simple rescaling.
|
|
X, y = _rescale_data(X, y, sample_weight)
|
|
|
|
if sp.issparse(X):
|
|
X_offset_scale = X_offset / X_scale
|
|
|
|
def matvec(b):
|
|
return X.dot(b) - b.dot(X_offset_scale)
|
|
|
|
def rmatvec(b):
|
|
return X.T.dot(b) - X_offset_scale * np.sum(b)
|
|
|
|
X_centered = sparse.linalg.LinearOperator(shape=X.shape,
|
|
matvec=matvec,
|
|
rmatvec=rmatvec)
|
|
|
|
if y.ndim < 2:
|
|
out = sparse_lsqr(X_centered, y)
|
|
self.coef_ = out[0]
|
|
self._residues = out[3]
|
|
else:
|
|
# sparse_lstsq cannot handle y with shape (M, K)
|
|
outs = Parallel(n_jobs=n_jobs_)(
|
|
delayed(sparse_lsqr)(X_centered, y[:, j].ravel())
|
|
for j in range(y.shape[1]))
|
|
self.coef_ = np.vstack([out[0] for out in outs])
|
|
self._residues = np.vstack([out[3] for out in outs])
|
|
else:
|
|
self.coef_, self._residues, self.rank_, self.singular_ = \
|
|
linalg.lstsq(X, y)
|
|
self.coef_ = self.coef_.T
|
|
|
|
if y.ndim == 1:
|
|
self.coef_ = np.ravel(self.coef_)
|
|
self._set_intercept(X_offset, y_offset, X_scale)
|
|
return self
|
|
|
|
|
|
def _pre_fit(X, y, Xy, precompute, normalize, fit_intercept, copy,
|
|
check_input=True, sample_weight=None):
|
|
"""Aux function used at beginning of fit in linear models
|
|
|
|
Parameters
|
|
----------
|
|
order : 'F', 'C' or None, default=None
|
|
Whether X and y will be forced to be fortran or c-style. Only relevant
|
|
if sample_weight is not None.
|
|
"""
|
|
n_samples, n_features = X.shape
|
|
|
|
if sparse.isspmatrix(X):
|
|
# copy is not needed here as X is not modified inplace when X is sparse
|
|
precompute = False
|
|
X, y, X_offset, y_offset, X_scale = _preprocess_data(
|
|
X, y, fit_intercept=fit_intercept, normalize=normalize,
|
|
copy=False, return_mean=True, check_input=check_input)
|
|
else:
|
|
# copy was done in fit if necessary
|
|
X, y, X_offset, y_offset, X_scale = _preprocess_data(
|
|
X, y, fit_intercept=fit_intercept, normalize=normalize, copy=copy,
|
|
check_input=check_input, sample_weight=sample_weight)
|
|
if sample_weight is not None:
|
|
X, y = _rescale_data(X, y, sample_weight=sample_weight)
|
|
if hasattr(precompute, '__array__') and (
|
|
fit_intercept and not np.allclose(X_offset, np.zeros(n_features)) or
|
|
normalize and not np.allclose(X_scale, np.ones(n_features))):
|
|
warnings.warn("Gram matrix was provided but X was centered"
|
|
" to fit intercept, "
|
|
"or X was normalized : recomputing Gram matrix.",
|
|
UserWarning)
|
|
# recompute Gram
|
|
precompute = 'auto'
|
|
Xy = None
|
|
|
|
# precompute if n_samples > n_features
|
|
if isinstance(precompute, str) and precompute == 'auto':
|
|
precompute = (n_samples > n_features)
|
|
|
|
if precompute is True:
|
|
# make sure that the 'precompute' array is contiguous.
|
|
precompute = np.empty(shape=(n_features, n_features), dtype=X.dtype,
|
|
order='C')
|
|
np.dot(X.T, X, out=precompute)
|
|
|
|
if not hasattr(precompute, '__array__'):
|
|
Xy = None # cannot use Xy if precompute is not Gram
|
|
|
|
if hasattr(precompute, '__array__') and Xy is None:
|
|
common_dtype = np.find_common_type([X.dtype, y.dtype], [])
|
|
if y.ndim == 1:
|
|
# Xy is 1d, make sure it is contiguous.
|
|
Xy = np.empty(shape=n_features, dtype=common_dtype, order='C')
|
|
np.dot(X.T, y, out=Xy)
|
|
else:
|
|
# Make sure that Xy is always F contiguous even if X or y are not
|
|
# contiguous: the goal is to make it fast to extract the data for a
|
|
# specific target.
|
|
n_targets = y.shape[1]
|
|
Xy = np.empty(shape=(n_features, n_targets), dtype=common_dtype,
|
|
order='F')
|
|
np.dot(y.T, X, out=Xy.T)
|
|
|
|
return X, y, X_offset, y_offset, X_scale, precompute, Xy
|