Vehicle-Anti-Theft-Face-Rec.../venv/Lib/site-packages/sklearn/gaussian_process/tests/test_kernels.py

385 lines
14 KiB
Python

"""Testing for kernels for Gaussian processes."""
# Author: Jan Hendrik Metzen <jhm@informatik.uni-bremen.de>
# License: BSD 3 clause
import pytest
import numpy as np
from inspect import signature
from sklearn.gaussian_process.kernels import _approx_fprime
from sklearn.metrics.pairwise \
import PAIRWISE_KERNEL_FUNCTIONS, euclidean_distances, pairwise_kernels
from sklearn.gaussian_process.kernels \
import (RBF, Matern, RationalQuadratic, ExpSineSquared, DotProduct,
ConstantKernel, WhiteKernel, PairwiseKernel, KernelOperator,
Exponentiation, Kernel, CompoundKernel)
from sklearn.base import clone
from sklearn.utils._testing import (assert_almost_equal, assert_array_equal,
assert_array_almost_equal,
assert_allclose,
assert_raise_message)
X = np.random.RandomState(0).normal(0, 1, (5, 2))
Y = np.random.RandomState(0).normal(0, 1, (6, 2))
kernel_rbf_plus_white = RBF(length_scale=2.0) + WhiteKernel(noise_level=3.0)
kernels = [RBF(length_scale=2.0), RBF(length_scale_bounds=(0.5, 2.0)),
ConstantKernel(constant_value=10.0),
2.0 * RBF(length_scale=0.33, length_scale_bounds="fixed"),
2.0 * RBF(length_scale=0.5), kernel_rbf_plus_white,
2.0 * RBF(length_scale=[0.5, 2.0]),
2.0 * Matern(length_scale=0.33, length_scale_bounds="fixed"),
2.0 * Matern(length_scale=0.5, nu=0.5),
2.0 * Matern(length_scale=1.5, nu=1.5),
2.0 * Matern(length_scale=2.5, nu=2.5),
2.0 * Matern(length_scale=[0.5, 2.0], nu=0.5),
3.0 * Matern(length_scale=[2.0, 0.5], nu=1.5),
4.0 * Matern(length_scale=[0.5, 0.5], nu=2.5),
RationalQuadratic(length_scale=0.5, alpha=1.5),
ExpSineSquared(length_scale=0.5, periodicity=1.5),
DotProduct(sigma_0=2.0), DotProduct(sigma_0=2.0) ** 2,
RBF(length_scale=[2.0]), Matern(length_scale=[2.0])]
for metric in PAIRWISE_KERNEL_FUNCTIONS:
if metric in ["additive_chi2", "chi2"]:
continue
kernels.append(PairwiseKernel(gamma=1.0, metric=metric))
@pytest.mark.parametrize('kernel', kernels)
def test_kernel_gradient(kernel):
# Compare analytic and numeric gradient of kernels.
K, K_gradient = kernel(X, eval_gradient=True)
assert K_gradient.shape[0] == X.shape[0]
assert K_gradient.shape[1] == X.shape[0]
assert K_gradient.shape[2] == kernel.theta.shape[0]
def eval_kernel_for_theta(theta):
kernel_clone = kernel.clone_with_theta(theta)
K = kernel_clone(X, eval_gradient=False)
return K
K_gradient_approx = \
_approx_fprime(kernel.theta, eval_kernel_for_theta, 1e-10)
assert_almost_equal(K_gradient, K_gradient_approx, 4)
@pytest.mark.parametrize(
'kernel',
[kernel for kernel in kernels
# skip non-basic kernels
if not (isinstance(kernel, KernelOperator)
or isinstance(kernel, Exponentiation))])
def test_kernel_theta(kernel):
# Check that parameter vector theta of kernel is set correctly.
theta = kernel.theta
_, K_gradient = kernel(X, eval_gradient=True)
# Determine kernel parameters that contribute to theta
init_sign = signature(kernel.__class__.__init__).parameters.values()
args = [p.name for p in init_sign if p.name != 'self']
theta_vars = map(lambda s: s[0:-len("_bounds")],
filter(lambda s: s.endswith("_bounds"), args))
assert (
set(hyperparameter.name
for hyperparameter in kernel.hyperparameters) ==
set(theta_vars))
# Check that values returned in theta are consistent with
# hyperparameter values (being their logarithms)
for i, hyperparameter in enumerate(kernel.hyperparameters):
assert (theta[i] == np.log(getattr(kernel, hyperparameter.name)))
# Fixed kernel parameters must be excluded from theta and gradient.
for i, hyperparameter in enumerate(kernel.hyperparameters):
# create copy with certain hyperparameter fixed
params = kernel.get_params()
params[hyperparameter.name + "_bounds"] = "fixed"
kernel_class = kernel.__class__
new_kernel = kernel_class(**params)
# Check that theta and K_gradient are identical with the fixed
# dimension left out
_, K_gradient_new = new_kernel(X, eval_gradient=True)
assert theta.shape[0] == new_kernel.theta.shape[0] + 1
assert K_gradient.shape[2] == K_gradient_new.shape[2] + 1
if i > 0:
assert theta[:i] == new_kernel.theta[:i]
assert_array_equal(K_gradient[..., :i],
K_gradient_new[..., :i])
if i + 1 < len(kernel.hyperparameters):
assert theta[i + 1:] == new_kernel.theta[i:]
assert_array_equal(K_gradient[..., i + 1:],
K_gradient_new[..., i:])
# Check that values of theta are modified correctly
for i, hyperparameter in enumerate(kernel.hyperparameters):
theta[i] = np.log(42)
kernel.theta = theta
assert_almost_equal(getattr(kernel, hyperparameter.name), 42)
setattr(kernel, hyperparameter.name, 43)
assert_almost_equal(kernel.theta[i], np.log(43))
@pytest.mark.parametrize('kernel',
[kernel for kernel in kernels
# Identity is not satisfied on diagonal
if kernel != kernel_rbf_plus_white])
def test_auto_vs_cross(kernel):
# Auto-correlation and cross-correlation should be consistent.
K_auto = kernel(X)
K_cross = kernel(X, X)
assert_almost_equal(K_auto, K_cross, 5)
@pytest.mark.parametrize('kernel', kernels)
def test_kernel_diag(kernel):
# Test that diag method of kernel returns consistent results.
K_call_diag = np.diag(kernel(X))
K_diag = kernel.diag(X)
assert_almost_equal(K_call_diag, K_diag, 5)
def test_kernel_operator_commutative():
# Adding kernels and multiplying kernels should be commutative.
# Check addition
assert_almost_equal((RBF(2.0) + 1.0)(X),
(1.0 + RBF(2.0))(X))
# Check multiplication
assert_almost_equal((3.0 * RBF(2.0))(X),
(RBF(2.0) * 3.0)(X))
def test_kernel_anisotropic():
# Anisotropic kernel should be consistent with isotropic kernels.
kernel = 3.0 * RBF([0.5, 2.0])
K = kernel(X)
X1 = np.array(X)
X1[:, 0] *= 4
K1 = 3.0 * RBF(2.0)(X1)
assert_almost_equal(K, K1)
X2 = np.array(X)
X2[:, 1] /= 4
K2 = 3.0 * RBF(0.5)(X2)
assert_almost_equal(K, K2)
# Check getting and setting via theta
kernel.theta = kernel.theta + np.log(2)
assert_array_equal(kernel.theta, np.log([6.0, 1.0, 4.0]))
assert_array_equal(kernel.k2.length_scale, [1.0, 4.0])
@pytest.mark.parametrize('kernel',
[kernel for kernel in kernels
if kernel.is_stationary()])
def test_kernel_stationary(kernel):
# Test stationarity of kernels.
K = kernel(X, X + 1)
assert_almost_equal(K[0, 0], np.diag(K))
@pytest.mark.parametrize('kernel', kernels)
def test_kernel_input_type(kernel):
# Test whether kernels is for vectors or structured data
if isinstance(kernel, Exponentiation):
assert(kernel.requires_vector_input ==
kernel.kernel.requires_vector_input)
if isinstance(kernel, KernelOperator):
assert(kernel.requires_vector_input ==
(kernel.k1.requires_vector_input or
kernel.k2.requires_vector_input))
def test_compound_kernel_input_type():
kernel = CompoundKernel([WhiteKernel(noise_level=3.0)])
assert not kernel.requires_vector_input
kernel = CompoundKernel([WhiteKernel(noise_level=3.0),
RBF(length_scale=2.0)])
assert kernel.requires_vector_input
def check_hyperparameters_equal(kernel1, kernel2):
# Check that hyperparameters of two kernels are equal
for attr in set(dir(kernel1) + dir(kernel2)):
if attr.startswith("hyperparameter_"):
attr_value1 = getattr(kernel1, attr)
attr_value2 = getattr(kernel2, attr)
assert attr_value1 == attr_value2
@pytest.mark.parametrize("kernel", kernels)
def test_kernel_clone(kernel):
# Test that sklearn's clone works correctly on kernels.
kernel_cloned = clone(kernel)
# XXX: Should this be fixed?
# This differs from the sklearn's estimators equality check.
assert kernel == kernel_cloned
assert id(kernel) != id(kernel_cloned)
# Check that all constructor parameters are equal.
assert kernel.get_params() == kernel_cloned.get_params()
# Check that all hyperparameters are equal.
check_hyperparameters_equal(kernel, kernel_cloned)
@pytest.mark.parametrize('kernel', kernels)
def test_kernel_clone_after_set_params(kernel):
# This test is to verify that using set_params does not
# break clone on kernels.
# This used to break because in kernels such as the RBF, non-trivial
# logic that modified the length scale used to be in the constructor
# See https://github.com/scikit-learn/scikit-learn/issues/6961
# for more details.
bounds = (1e-5, 1e5)
kernel_cloned = clone(kernel)
params = kernel.get_params()
# RationalQuadratic kernel is isotropic.
isotropic_kernels = (ExpSineSquared, RationalQuadratic)
if 'length_scale' in params and not isinstance(kernel,
isotropic_kernels):
length_scale = params['length_scale']
if np.iterable(length_scale):
# XXX unreached code as of v0.22
params['length_scale'] = length_scale[0]
params['length_scale_bounds'] = bounds
else:
params['length_scale'] = [length_scale] * 2
params['length_scale_bounds'] = bounds * 2
kernel_cloned.set_params(**params)
kernel_cloned_clone = clone(kernel_cloned)
assert (kernel_cloned_clone.get_params() == kernel_cloned.get_params())
assert id(kernel_cloned_clone) != id(kernel_cloned)
check_hyperparameters_equal(kernel_cloned, kernel_cloned_clone)
def test_matern_kernel():
# Test consistency of Matern kernel for special values of nu.
K = Matern(nu=1.5, length_scale=1.0)(X)
# the diagonal elements of a matern kernel are 1
assert_array_almost_equal(np.diag(K), np.ones(X.shape[0]))
# matern kernel for coef0==0.5 is equal to absolute exponential kernel
K_absexp = np.exp(-euclidean_distances(X, X, squared=False))
K = Matern(nu=0.5, length_scale=1.0)(X)
assert_array_almost_equal(K, K_absexp)
# matern kernel with coef0==inf is equal to RBF kernel
K_rbf = RBF(length_scale=1.0)(X)
K = Matern(nu=np.inf, length_scale=1.0)(X)
assert_array_almost_equal(K, K_rbf)
assert_allclose(K, K_rbf)
# test that special cases of matern kernel (coef0 in [0.5, 1.5, 2.5])
# result in nearly identical results as the general case for coef0 in
# [0.5 + tiny, 1.5 + tiny, 2.5 + tiny]
tiny = 1e-10
for nu in [0.5, 1.5, 2.5]:
K1 = Matern(nu=nu, length_scale=1.0)(X)
K2 = Matern(nu=nu + tiny, length_scale=1.0)(X)
assert_array_almost_equal(K1, K2)
# test that coef0==large is close to RBF
large = 100
K1 = Matern(nu=large, length_scale=1.0)(X)
K2 = RBF(length_scale=1.0)(X)
assert_array_almost_equal(K1, K2, decimal=2)
@pytest.mark.parametrize("kernel", kernels)
def test_kernel_versus_pairwise(kernel):
# Check that GP kernels can also be used as pairwise kernels.
# Test auto-kernel
if kernel != kernel_rbf_plus_white:
# For WhiteKernel: k(X) != k(X,X). This is assumed by
# pairwise_kernels
K1 = kernel(X)
K2 = pairwise_kernels(X, metric=kernel)
assert_array_almost_equal(K1, K2)
# Test cross-kernel
K1 = kernel(X, Y)
K2 = pairwise_kernels(X, Y, metric=kernel)
assert_array_almost_equal(K1, K2)
@pytest.mark.parametrize("kernel", kernels)
def test_set_get_params(kernel):
# Check that set_params()/get_params() is consistent with kernel.theta.
# Test get_params()
index = 0
params = kernel.get_params()
for hyperparameter in kernel.hyperparameters:
if isinstance("string", type(hyperparameter.bounds)):
if hyperparameter.bounds == "fixed":
continue
size = hyperparameter.n_elements
if size > 1: # anisotropic kernels
assert_almost_equal(np.exp(kernel.theta[index:index + size]),
params[hyperparameter.name])
index += size
else:
assert_almost_equal(np.exp(kernel.theta[index]),
params[hyperparameter.name])
index += 1
# Test set_params()
index = 0
value = 10 # arbitrary value
for hyperparameter in kernel.hyperparameters:
if isinstance("string", type(hyperparameter.bounds)):
if hyperparameter.bounds == "fixed":
continue
size = hyperparameter.n_elements
if size > 1: # anisotropic kernels
kernel.set_params(**{hyperparameter.name: [value] * size})
assert_almost_equal(np.exp(kernel.theta[index:index + size]),
[value] * size)
index += size
else:
kernel.set_params(**{hyperparameter.name: value})
assert_almost_equal(np.exp(kernel.theta[index]), value)
index += 1
@pytest.mark.parametrize("kernel", kernels)
def test_repr_kernels(kernel):
# Smoke-test for repr in kernels.
repr(kernel)
def test_warns_on_get_params_non_attribute():
class MyKernel(Kernel):
def __init__(self, param=5):
pass
def __call__(self, X, Y=None, eval_gradient=False):
return X
def diag(self, X):
return np.ones(X.shape[0])
def is_stationary(self):
return False
est = MyKernel()
with pytest.warns(FutureWarning, match='AttributeError'):
params = est.get_params()
assert params['param'] is None
def test_rational_quadratic_kernel():
kernel = RationalQuadratic(length_scale=[1., 1.])
assert_raise_message(AttributeError,
"RationalQuadratic kernel only supports isotropic "
"version, please use a single "
"scalar for length_scale", kernel, X)