1790 lines
		
	
	
	
		
			27 KiB
		
	
	
	
		
			Text
		
	
	
	
	
	
			
		
		
	
	
			1790 lines
		
	
	
	
		
			27 KiB
		
	
	
	
		
			Text
		
	
	
	
	
	
input: "data"
 | 
						|
input_shape {
 | 
						|
  dim: 1
 | 
						|
  dim: 3
 | 
						|
  dim: 300
 | 
						|
  dim: 300
 | 
						|
}
 | 
						|
 | 
						|
layer {
 | 
						|
  name: "data_bn"
 | 
						|
  type: "BatchNorm"
 | 
						|
  bottom: "data"
 | 
						|
  top: "data_bn"
 | 
						|
  param {
 | 
						|
    lr_mult: 0.0
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 0.0
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 0.0
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "data_scale"
 | 
						|
  type: "Scale"
 | 
						|
  bottom: "data_bn"
 | 
						|
  top: "data_bn"
 | 
						|
  param {
 | 
						|
    lr_mult: 1.0
 | 
						|
    decay_mult: 1.0
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 2.0
 | 
						|
    decay_mult: 1.0
 | 
						|
  }
 | 
						|
  scale_param {
 | 
						|
    bias_term: true
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "conv1_h"
 | 
						|
  type: "Convolution"
 | 
						|
  bottom: "data_bn"
 | 
						|
  top: "conv1_h"
 | 
						|
  param {
 | 
						|
    lr_mult: 1.0
 | 
						|
    decay_mult: 1.0
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 2.0
 | 
						|
    decay_mult: 1.0
 | 
						|
  }
 | 
						|
  convolution_param {
 | 
						|
    num_output: 32
 | 
						|
    pad: 3
 | 
						|
    kernel_size: 7
 | 
						|
    stride: 2
 | 
						|
    weight_filler {
 | 
						|
      type: "msra"
 | 
						|
      variance_norm: FAN_OUT
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0.0
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "conv1_bn_h"
 | 
						|
  type: "BatchNorm"
 | 
						|
  bottom: "conv1_h"
 | 
						|
  top: "conv1_h"
 | 
						|
  param {
 | 
						|
    lr_mult: 0.0
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 0.0
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 0.0
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "conv1_scale_h"
 | 
						|
  type: "Scale"
 | 
						|
  bottom: "conv1_h"
 | 
						|
  top: "conv1_h"
 | 
						|
  param {
 | 
						|
    lr_mult: 1.0
 | 
						|
    decay_mult: 1.0
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 2.0
 | 
						|
    decay_mult: 1.0
 | 
						|
  }
 | 
						|
  scale_param {
 | 
						|
    bias_term: true
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "conv1_relu"
 | 
						|
  type: "ReLU"
 | 
						|
  bottom: "conv1_h"
 | 
						|
  top: "conv1_h"
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "conv1_pool"
 | 
						|
  type: "Pooling"
 | 
						|
  bottom: "conv1_h"
 | 
						|
  top: "conv1_pool"
 | 
						|
  pooling_param {
 | 
						|
    kernel_size: 3
 | 
						|
    stride: 2
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "layer_64_1_conv1_h"
 | 
						|
  type: "Convolution"
 | 
						|
  bottom: "conv1_pool"
 | 
						|
  top: "layer_64_1_conv1_h"
 | 
						|
  param {
 | 
						|
    lr_mult: 1.0
 | 
						|
    decay_mult: 1.0
 | 
						|
  }
 | 
						|
  convolution_param {
 | 
						|
    num_output: 32
 | 
						|
    bias_term: false
 | 
						|
    pad: 1
 | 
						|
    kernel_size: 3
 | 
						|
    stride: 1
 | 
						|
    weight_filler {
 | 
						|
      type: "msra"
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0.0
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "layer_64_1_bn2_h"
 | 
						|
  type: "BatchNorm"
 | 
						|
  bottom: "layer_64_1_conv1_h"
 | 
						|
  top: "layer_64_1_conv1_h"
 | 
						|
  param {
 | 
						|
    lr_mult: 0.0
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 0.0
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 0.0
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "layer_64_1_scale2_h"
 | 
						|
  type: "Scale"
 | 
						|
  bottom: "layer_64_1_conv1_h"
 | 
						|
  top: "layer_64_1_conv1_h"
 | 
						|
  param {
 | 
						|
    lr_mult: 1.0
 | 
						|
    decay_mult: 1.0
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 2.0
 | 
						|
    decay_mult: 1.0
 | 
						|
  }
 | 
						|
  scale_param {
 | 
						|
    bias_term: true
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "layer_64_1_relu2"
 | 
						|
  type: "ReLU"
 | 
						|
  bottom: "layer_64_1_conv1_h"
 | 
						|
  top: "layer_64_1_conv1_h"
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "layer_64_1_conv2_h"
 | 
						|
  type: "Convolution"
 | 
						|
  bottom: "layer_64_1_conv1_h"
 | 
						|
  top: "layer_64_1_conv2_h"
 | 
						|
  param {
 | 
						|
    lr_mult: 1.0
 | 
						|
    decay_mult: 1.0
 | 
						|
  }
 | 
						|
  convolution_param {
 | 
						|
    num_output: 32
 | 
						|
    bias_term: false
 | 
						|
    pad: 1
 | 
						|
    kernel_size: 3
 | 
						|
    stride: 1
 | 
						|
    weight_filler {
 | 
						|
      type: "msra"
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0.0
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "layer_64_1_sum"
 | 
						|
  type: "Eltwise"
 | 
						|
  bottom: "layer_64_1_conv2_h"
 | 
						|
  bottom: "conv1_pool"
 | 
						|
  top: "layer_64_1_sum"
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "layer_128_1_bn1_h"
 | 
						|
  type: "BatchNorm"
 | 
						|
  bottom: "layer_64_1_sum"
 | 
						|
  top: "layer_128_1_bn1_h"
 | 
						|
  param {
 | 
						|
    lr_mult: 0.0
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 0.0
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 0.0
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "layer_128_1_scale1_h"
 | 
						|
  type: "Scale"
 | 
						|
  bottom: "layer_128_1_bn1_h"
 | 
						|
  top: "layer_128_1_bn1_h"
 | 
						|
  param {
 | 
						|
    lr_mult: 1.0
 | 
						|
    decay_mult: 1.0
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 2.0
 | 
						|
    decay_mult: 1.0
 | 
						|
  }
 | 
						|
  scale_param {
 | 
						|
    bias_term: true
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "layer_128_1_relu1"
 | 
						|
  type: "ReLU"
 | 
						|
  bottom: "layer_128_1_bn1_h"
 | 
						|
  top: "layer_128_1_bn1_h"
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "layer_128_1_conv1_h"
 | 
						|
  type: "Convolution"
 | 
						|
  bottom: "layer_128_1_bn1_h"
 | 
						|
  top: "layer_128_1_conv1_h"
 | 
						|
  param {
 | 
						|
    lr_mult: 1.0
 | 
						|
    decay_mult: 1.0
 | 
						|
  }
 | 
						|
  convolution_param {
 | 
						|
    num_output: 128
 | 
						|
    bias_term: false
 | 
						|
    pad: 1
 | 
						|
    kernel_size: 3
 | 
						|
    stride: 2
 | 
						|
    weight_filler {
 | 
						|
      type: "msra"
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0.0
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "layer_128_1_bn2"
 | 
						|
  type: "BatchNorm"
 | 
						|
  bottom: "layer_128_1_conv1_h"
 | 
						|
  top: "layer_128_1_conv1_h"
 | 
						|
  param {
 | 
						|
    lr_mult: 0.0
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 0.0
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 0.0
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "layer_128_1_scale2"
 | 
						|
  type: "Scale"
 | 
						|
  bottom: "layer_128_1_conv1_h"
 | 
						|
  top: "layer_128_1_conv1_h"
 | 
						|
  param {
 | 
						|
    lr_mult: 1.0
 | 
						|
    decay_mult: 1.0
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 2.0
 | 
						|
    decay_mult: 1.0
 | 
						|
  }
 | 
						|
  scale_param {
 | 
						|
    bias_term: true
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "layer_128_1_relu2"
 | 
						|
  type: "ReLU"
 | 
						|
  bottom: "layer_128_1_conv1_h"
 | 
						|
  top: "layer_128_1_conv1_h"
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "layer_128_1_conv2"
 | 
						|
  type: "Convolution"
 | 
						|
  bottom: "layer_128_1_conv1_h"
 | 
						|
  top: "layer_128_1_conv2"
 | 
						|
  param {
 | 
						|
    lr_mult: 1.0
 | 
						|
    decay_mult: 1.0
 | 
						|
  }
 | 
						|
  convolution_param {
 | 
						|
    num_output: 128
 | 
						|
    bias_term: false
 | 
						|
    pad: 1
 | 
						|
    kernel_size: 3
 | 
						|
    stride: 1
 | 
						|
    weight_filler {
 | 
						|
      type: "msra"
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0.0
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "layer_128_1_conv_expand_h"
 | 
						|
  type: "Convolution"
 | 
						|
  bottom: "layer_128_1_bn1_h"
 | 
						|
  top: "layer_128_1_conv_expand_h"
 | 
						|
  param {
 | 
						|
    lr_mult: 1.0
 | 
						|
    decay_mult: 1.0
 | 
						|
  }
 | 
						|
  convolution_param {
 | 
						|
    num_output: 128
 | 
						|
    bias_term: false
 | 
						|
    pad: 0
 | 
						|
    kernel_size: 1
 | 
						|
    stride: 2
 | 
						|
    weight_filler {
 | 
						|
      type: "msra"
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0.0
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "layer_128_1_sum"
 | 
						|
  type: "Eltwise"
 | 
						|
  bottom: "layer_128_1_conv2"
 | 
						|
  bottom: "layer_128_1_conv_expand_h"
 | 
						|
  top: "layer_128_1_sum"
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "layer_256_1_bn1"
 | 
						|
  type: "BatchNorm"
 | 
						|
  bottom: "layer_128_1_sum"
 | 
						|
  top: "layer_256_1_bn1"
 | 
						|
  param {
 | 
						|
    lr_mult: 0.0
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 0.0
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 0.0
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "layer_256_1_scale1"
 | 
						|
  type: "Scale"
 | 
						|
  bottom: "layer_256_1_bn1"
 | 
						|
  top: "layer_256_1_bn1"
 | 
						|
  param {
 | 
						|
    lr_mult: 1.0
 | 
						|
    decay_mult: 1.0
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 2.0
 | 
						|
    decay_mult: 1.0
 | 
						|
  }
 | 
						|
  scale_param {
 | 
						|
    bias_term: true
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "layer_256_1_relu1"
 | 
						|
  type: "ReLU"
 | 
						|
  bottom: "layer_256_1_bn1"
 | 
						|
  top: "layer_256_1_bn1"
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "layer_256_1_conv1"
 | 
						|
  type: "Convolution"
 | 
						|
  bottom: "layer_256_1_bn1"
 | 
						|
  top: "layer_256_1_conv1"
 | 
						|
  param {
 | 
						|
    lr_mult: 1.0
 | 
						|
    decay_mult: 1.0
 | 
						|
  }
 | 
						|
  convolution_param {
 | 
						|
    num_output: 256
 | 
						|
    bias_term: false
 | 
						|
    pad: 1
 | 
						|
    kernel_size: 3
 | 
						|
    stride: 2
 | 
						|
    weight_filler {
 | 
						|
      type: "msra"
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0.0
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "layer_256_1_bn2"
 | 
						|
  type: "BatchNorm"
 | 
						|
  bottom: "layer_256_1_conv1"
 | 
						|
  top: "layer_256_1_conv1"
 | 
						|
  param {
 | 
						|
    lr_mult: 0.0
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 0.0
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 0.0
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "layer_256_1_scale2"
 | 
						|
  type: "Scale"
 | 
						|
  bottom: "layer_256_1_conv1"
 | 
						|
  top: "layer_256_1_conv1"
 | 
						|
  param {
 | 
						|
    lr_mult: 1.0
 | 
						|
    decay_mult: 1.0
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 2.0
 | 
						|
    decay_mult: 1.0
 | 
						|
  }
 | 
						|
  scale_param {
 | 
						|
    bias_term: true
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "layer_256_1_relu2"
 | 
						|
  type: "ReLU"
 | 
						|
  bottom: "layer_256_1_conv1"
 | 
						|
  top: "layer_256_1_conv1"
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "layer_256_1_conv2"
 | 
						|
  type: "Convolution"
 | 
						|
  bottom: "layer_256_1_conv1"
 | 
						|
  top: "layer_256_1_conv2"
 | 
						|
  param {
 | 
						|
    lr_mult: 1.0
 | 
						|
    decay_mult: 1.0
 | 
						|
  }
 | 
						|
  convolution_param {
 | 
						|
    num_output: 256
 | 
						|
    bias_term: false
 | 
						|
    pad: 1
 | 
						|
    kernel_size: 3
 | 
						|
    stride: 1
 | 
						|
    weight_filler {
 | 
						|
      type: "msra"
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0.0
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "layer_256_1_conv_expand"
 | 
						|
  type: "Convolution"
 | 
						|
  bottom: "layer_256_1_bn1"
 | 
						|
  top: "layer_256_1_conv_expand"
 | 
						|
  param {
 | 
						|
    lr_mult: 1.0
 | 
						|
    decay_mult: 1.0
 | 
						|
  }
 | 
						|
  convolution_param {
 | 
						|
    num_output: 256
 | 
						|
    bias_term: false
 | 
						|
    pad: 0
 | 
						|
    kernel_size: 1
 | 
						|
    stride: 2
 | 
						|
    weight_filler {
 | 
						|
      type: "msra"
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0.0
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "layer_256_1_sum"
 | 
						|
  type: "Eltwise"
 | 
						|
  bottom: "layer_256_1_conv2"
 | 
						|
  bottom: "layer_256_1_conv_expand"
 | 
						|
  top: "layer_256_1_sum"
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "layer_512_1_bn1"
 | 
						|
  type: "BatchNorm"
 | 
						|
  bottom: "layer_256_1_sum"
 | 
						|
  top: "layer_512_1_bn1"
 | 
						|
  param {
 | 
						|
    lr_mult: 0.0
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 0.0
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 0.0
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "layer_512_1_scale1"
 | 
						|
  type: "Scale"
 | 
						|
  bottom: "layer_512_1_bn1"
 | 
						|
  top: "layer_512_1_bn1"
 | 
						|
  param {
 | 
						|
    lr_mult: 1.0
 | 
						|
    decay_mult: 1.0
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 2.0
 | 
						|
    decay_mult: 1.0
 | 
						|
  }
 | 
						|
  scale_param {
 | 
						|
    bias_term: true
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "layer_512_1_relu1"
 | 
						|
  type: "ReLU"
 | 
						|
  bottom: "layer_512_1_bn1"
 | 
						|
  top: "layer_512_1_bn1"
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "layer_512_1_conv1_h"
 | 
						|
  type: "Convolution"
 | 
						|
  bottom: "layer_512_1_bn1"
 | 
						|
  top: "layer_512_1_conv1_h"
 | 
						|
  param {
 | 
						|
    lr_mult: 1.0
 | 
						|
    decay_mult: 1.0
 | 
						|
  }
 | 
						|
  convolution_param {
 | 
						|
    num_output: 128
 | 
						|
    bias_term: false
 | 
						|
    pad: 1
 | 
						|
    kernel_size: 3
 | 
						|
    stride: 1 # 2
 | 
						|
    weight_filler {
 | 
						|
      type: "msra"
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0.0
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "layer_512_1_bn2_h"
 | 
						|
  type: "BatchNorm"
 | 
						|
  bottom: "layer_512_1_conv1_h"
 | 
						|
  top: "layer_512_1_conv1_h"
 | 
						|
  param {
 | 
						|
    lr_mult: 0.0
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 0.0
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 0.0
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "layer_512_1_scale2_h"
 | 
						|
  type: "Scale"
 | 
						|
  bottom: "layer_512_1_conv1_h"
 | 
						|
  top: "layer_512_1_conv1_h"
 | 
						|
  param {
 | 
						|
    lr_mult: 1.0
 | 
						|
    decay_mult: 1.0
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 2.0
 | 
						|
    decay_mult: 1.0
 | 
						|
  }
 | 
						|
  scale_param {
 | 
						|
    bias_term: true
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "layer_512_1_relu2"
 | 
						|
  type: "ReLU"
 | 
						|
  bottom: "layer_512_1_conv1_h"
 | 
						|
  top: "layer_512_1_conv1_h"
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "layer_512_1_conv2_h"
 | 
						|
  type: "Convolution"
 | 
						|
  bottom: "layer_512_1_conv1_h"
 | 
						|
  top: "layer_512_1_conv2_h"
 | 
						|
  param {
 | 
						|
    lr_mult: 1.0
 | 
						|
    decay_mult: 1.0
 | 
						|
  }
 | 
						|
  convolution_param {
 | 
						|
    num_output: 256
 | 
						|
    bias_term: false
 | 
						|
    pad: 2 # 1
 | 
						|
    kernel_size: 3
 | 
						|
    stride: 1
 | 
						|
    dilation: 2
 | 
						|
    weight_filler {
 | 
						|
      type: "msra"
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0.0
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "layer_512_1_conv_expand_h"
 | 
						|
  type: "Convolution"
 | 
						|
  bottom: "layer_512_1_bn1"
 | 
						|
  top: "layer_512_1_conv_expand_h"
 | 
						|
  param {
 | 
						|
    lr_mult: 1.0
 | 
						|
    decay_mult: 1.0
 | 
						|
  }
 | 
						|
  convolution_param {
 | 
						|
    num_output: 256
 | 
						|
    bias_term: false
 | 
						|
    pad: 0
 | 
						|
    kernel_size: 1
 | 
						|
    stride: 1 # 2
 | 
						|
    weight_filler {
 | 
						|
      type: "msra"
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0.0
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "layer_512_1_sum"
 | 
						|
  type: "Eltwise"
 | 
						|
  bottom: "layer_512_1_conv2_h"
 | 
						|
  bottom: "layer_512_1_conv_expand_h"
 | 
						|
  top: "layer_512_1_sum"
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "last_bn_h"
 | 
						|
  type: "BatchNorm"
 | 
						|
  bottom: "layer_512_1_sum"
 | 
						|
  top: "layer_512_1_sum"
 | 
						|
  param {
 | 
						|
    lr_mult: 0.0
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 0.0
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 0.0
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "last_scale_h"
 | 
						|
  type: "Scale"
 | 
						|
  bottom: "layer_512_1_sum"
 | 
						|
  top: "layer_512_1_sum"
 | 
						|
  param {
 | 
						|
    lr_mult: 1.0
 | 
						|
    decay_mult: 1.0
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 2.0
 | 
						|
    decay_mult: 1.0
 | 
						|
  }
 | 
						|
  scale_param {
 | 
						|
    bias_term: true
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "last_relu"
 | 
						|
  type: "ReLU"
 | 
						|
  bottom: "layer_512_1_sum"
 | 
						|
  top: "fc7"
 | 
						|
}
 | 
						|
 | 
						|
layer {
 | 
						|
  name: "conv6_1_h"
 | 
						|
  type: "Convolution"
 | 
						|
  bottom: "fc7"
 | 
						|
  top: "conv6_1_h"
 | 
						|
  param {
 | 
						|
    lr_mult: 1
 | 
						|
    decay_mult: 1
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 2
 | 
						|
    decay_mult: 0
 | 
						|
  }
 | 
						|
  convolution_param {
 | 
						|
    num_output: 128
 | 
						|
    pad: 0
 | 
						|
    kernel_size: 1
 | 
						|
    stride: 1
 | 
						|
    weight_filler {
 | 
						|
      type: "xavier"
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "conv6_1_relu"
 | 
						|
  type: "ReLU"
 | 
						|
  bottom: "conv6_1_h"
 | 
						|
  top: "conv6_1_h"
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "conv6_2_h"
 | 
						|
  type: "Convolution"
 | 
						|
  bottom: "conv6_1_h"
 | 
						|
  top: "conv6_2_h"
 | 
						|
  param {
 | 
						|
    lr_mult: 1
 | 
						|
    decay_mult: 1
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 2
 | 
						|
    decay_mult: 0
 | 
						|
  }
 | 
						|
  convolution_param {
 | 
						|
    num_output: 256
 | 
						|
    pad: 1
 | 
						|
    kernel_size: 3
 | 
						|
    stride: 2
 | 
						|
    weight_filler {
 | 
						|
      type: "xavier"
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "conv6_2_relu"
 | 
						|
  type: "ReLU"
 | 
						|
  bottom: "conv6_2_h"
 | 
						|
  top: "conv6_2_h"
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "conv7_1_h"
 | 
						|
  type: "Convolution"
 | 
						|
  bottom: "conv6_2_h"
 | 
						|
  top: "conv7_1_h"
 | 
						|
  param {
 | 
						|
    lr_mult: 1
 | 
						|
    decay_mult: 1
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 2
 | 
						|
    decay_mult: 0
 | 
						|
  }
 | 
						|
  convolution_param {
 | 
						|
    num_output: 64
 | 
						|
    pad: 0
 | 
						|
    kernel_size: 1
 | 
						|
    stride: 1
 | 
						|
    weight_filler {
 | 
						|
      type: "xavier"
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "conv7_1_relu"
 | 
						|
  type: "ReLU"
 | 
						|
  bottom: "conv7_1_h"
 | 
						|
  top: "conv7_1_h"
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "conv7_2_h"
 | 
						|
  type: "Convolution"
 | 
						|
  bottom: "conv7_1_h"
 | 
						|
  top: "conv7_2_h"
 | 
						|
  param {
 | 
						|
    lr_mult: 1
 | 
						|
    decay_mult: 1
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 2
 | 
						|
    decay_mult: 0
 | 
						|
  }
 | 
						|
  convolution_param {
 | 
						|
    num_output: 128
 | 
						|
    pad: 1
 | 
						|
    kernel_size: 3
 | 
						|
    stride: 2
 | 
						|
    weight_filler {
 | 
						|
      type: "xavier"
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "conv7_2_relu"
 | 
						|
  type: "ReLU"
 | 
						|
  bottom: "conv7_2_h"
 | 
						|
  top: "conv7_2_h"
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "conv8_1_h"
 | 
						|
  type: "Convolution"
 | 
						|
  bottom: "conv7_2_h"
 | 
						|
  top: "conv8_1_h"
 | 
						|
  param {
 | 
						|
    lr_mult: 1
 | 
						|
    decay_mult: 1
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 2
 | 
						|
    decay_mult: 0
 | 
						|
  }
 | 
						|
  convolution_param {
 | 
						|
    num_output: 64
 | 
						|
    pad: 0
 | 
						|
    kernel_size: 1
 | 
						|
    stride: 1
 | 
						|
    weight_filler {
 | 
						|
      type: "xavier"
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "conv8_1_relu"
 | 
						|
  type: "ReLU"
 | 
						|
  bottom: "conv8_1_h"
 | 
						|
  top: "conv8_1_h"
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "conv8_2_h"
 | 
						|
  type: "Convolution"
 | 
						|
  bottom: "conv8_1_h"
 | 
						|
  top: "conv8_2_h"
 | 
						|
  param {
 | 
						|
    lr_mult: 1
 | 
						|
    decay_mult: 1
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 2
 | 
						|
    decay_mult: 0
 | 
						|
  }
 | 
						|
  convolution_param {
 | 
						|
    num_output: 128
 | 
						|
    pad: 0
 | 
						|
    kernel_size: 3
 | 
						|
    stride: 1
 | 
						|
    weight_filler {
 | 
						|
      type: "xavier"
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "conv8_2_relu"
 | 
						|
  type: "ReLU"
 | 
						|
  bottom: "conv8_2_h"
 | 
						|
  top: "conv8_2_h"
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "conv9_1_h"
 | 
						|
  type: "Convolution"
 | 
						|
  bottom: "conv8_2_h"
 | 
						|
  top: "conv9_1_h"
 | 
						|
  param {
 | 
						|
    lr_mult: 1
 | 
						|
    decay_mult: 1
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 2
 | 
						|
    decay_mult: 0
 | 
						|
  }
 | 
						|
  convolution_param {
 | 
						|
    num_output: 64
 | 
						|
    pad: 0
 | 
						|
    kernel_size: 1
 | 
						|
    stride: 1
 | 
						|
    weight_filler {
 | 
						|
      type: "xavier"
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "conv9_1_relu"
 | 
						|
  type: "ReLU"
 | 
						|
  bottom: "conv9_1_h"
 | 
						|
  top: "conv9_1_h"
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "conv9_2_h"
 | 
						|
  type: "Convolution"
 | 
						|
  bottom: "conv9_1_h"
 | 
						|
  top: "conv9_2_h"
 | 
						|
  param {
 | 
						|
    lr_mult: 1
 | 
						|
    decay_mult: 1
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 2
 | 
						|
    decay_mult: 0
 | 
						|
  }
 | 
						|
  convolution_param {
 | 
						|
    num_output: 128
 | 
						|
    pad: 0
 | 
						|
    kernel_size: 3
 | 
						|
    stride: 1
 | 
						|
    weight_filler {
 | 
						|
      type: "xavier"
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "conv9_2_relu"
 | 
						|
  type: "ReLU"
 | 
						|
  bottom: "conv9_2_h"
 | 
						|
  top: "conv9_2_h"
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "conv4_3_norm"
 | 
						|
  type: "Normalize"
 | 
						|
  bottom: "layer_256_1_bn1"
 | 
						|
  top: "conv4_3_norm"
 | 
						|
  norm_param {
 | 
						|
    across_spatial: false
 | 
						|
    scale_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 20
 | 
						|
    }
 | 
						|
    channel_shared: false
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "conv4_3_norm_mbox_loc"
 | 
						|
  type: "Convolution"
 | 
						|
  bottom: "conv4_3_norm"
 | 
						|
  top: "conv4_3_norm_mbox_loc"
 | 
						|
  param {
 | 
						|
    lr_mult: 1
 | 
						|
    decay_mult: 1
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 2
 | 
						|
    decay_mult: 0
 | 
						|
  }
 | 
						|
  convolution_param {
 | 
						|
    num_output: 16
 | 
						|
    pad: 1
 | 
						|
    kernel_size: 3
 | 
						|
    stride: 1
 | 
						|
    weight_filler {
 | 
						|
      type: "xavier"
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "conv4_3_norm_mbox_loc_perm"
 | 
						|
  type: "Permute"
 | 
						|
  bottom: "conv4_3_norm_mbox_loc"
 | 
						|
  top: "conv4_3_norm_mbox_loc_perm"
 | 
						|
  permute_param {
 | 
						|
    order: 0
 | 
						|
    order: 2
 | 
						|
    order: 3
 | 
						|
    order: 1
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "conv4_3_norm_mbox_loc_flat"
 | 
						|
  type: "Flatten"
 | 
						|
  bottom: "conv4_3_norm_mbox_loc_perm"
 | 
						|
  top: "conv4_3_norm_mbox_loc_flat"
 | 
						|
  flatten_param {
 | 
						|
    axis: 1
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "conv4_3_norm_mbox_conf"
 | 
						|
  type: "Convolution"
 | 
						|
  bottom: "conv4_3_norm"
 | 
						|
  top: "conv4_3_norm_mbox_conf"
 | 
						|
  param {
 | 
						|
    lr_mult: 1
 | 
						|
    decay_mult: 1
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 2
 | 
						|
    decay_mult: 0
 | 
						|
  }
 | 
						|
  convolution_param {
 | 
						|
    num_output: 8 # 84
 | 
						|
    pad: 1
 | 
						|
    kernel_size: 3
 | 
						|
    stride: 1
 | 
						|
    weight_filler {
 | 
						|
      type: "xavier"
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "conv4_3_norm_mbox_conf_perm"
 | 
						|
  type: "Permute"
 | 
						|
  bottom: "conv4_3_norm_mbox_conf"
 | 
						|
  top: "conv4_3_norm_mbox_conf_perm"
 | 
						|
  permute_param {
 | 
						|
    order: 0
 | 
						|
    order: 2
 | 
						|
    order: 3
 | 
						|
    order: 1
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "conv4_3_norm_mbox_conf_flat"
 | 
						|
  type: "Flatten"
 | 
						|
  bottom: "conv4_3_norm_mbox_conf_perm"
 | 
						|
  top: "conv4_3_norm_mbox_conf_flat"
 | 
						|
  flatten_param {
 | 
						|
    axis: 1
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "conv4_3_norm_mbox_priorbox"
 | 
						|
  type: "PriorBox"
 | 
						|
  bottom: "conv4_3_norm"
 | 
						|
  bottom: "data"
 | 
						|
  top: "conv4_3_norm_mbox_priorbox"
 | 
						|
  prior_box_param {
 | 
						|
    min_size: 30.0
 | 
						|
    max_size: 60.0
 | 
						|
    aspect_ratio: 2
 | 
						|
    flip: true
 | 
						|
    clip: false
 | 
						|
    variance: 0.1
 | 
						|
    variance: 0.1
 | 
						|
    variance: 0.2
 | 
						|
    variance: 0.2
 | 
						|
    step: 8
 | 
						|
    offset: 0.5
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "fc7_mbox_loc"
 | 
						|
  type: "Convolution"
 | 
						|
  bottom: "fc7"
 | 
						|
  top: "fc7_mbox_loc"
 | 
						|
  param {
 | 
						|
    lr_mult: 1
 | 
						|
    decay_mult: 1
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 2
 | 
						|
    decay_mult: 0
 | 
						|
  }
 | 
						|
  convolution_param {
 | 
						|
    num_output: 24
 | 
						|
    pad: 1
 | 
						|
    kernel_size: 3
 | 
						|
    stride: 1
 | 
						|
    weight_filler {
 | 
						|
      type: "xavier"
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "fc7_mbox_loc_perm"
 | 
						|
  type: "Permute"
 | 
						|
  bottom: "fc7_mbox_loc"
 | 
						|
  top: "fc7_mbox_loc_perm"
 | 
						|
  permute_param {
 | 
						|
    order: 0
 | 
						|
    order: 2
 | 
						|
    order: 3
 | 
						|
    order: 1
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "fc7_mbox_loc_flat"
 | 
						|
  type: "Flatten"
 | 
						|
  bottom: "fc7_mbox_loc_perm"
 | 
						|
  top: "fc7_mbox_loc_flat"
 | 
						|
  flatten_param {
 | 
						|
    axis: 1
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "fc7_mbox_conf"
 | 
						|
  type: "Convolution"
 | 
						|
  bottom: "fc7"
 | 
						|
  top: "fc7_mbox_conf"
 | 
						|
  param {
 | 
						|
    lr_mult: 1
 | 
						|
    decay_mult: 1
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 2
 | 
						|
    decay_mult: 0
 | 
						|
  }
 | 
						|
  convolution_param {
 | 
						|
    num_output: 12 # 126
 | 
						|
    pad: 1
 | 
						|
    kernel_size: 3
 | 
						|
    stride: 1
 | 
						|
    weight_filler {
 | 
						|
      type: "xavier"
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "fc7_mbox_conf_perm"
 | 
						|
  type: "Permute"
 | 
						|
  bottom: "fc7_mbox_conf"
 | 
						|
  top: "fc7_mbox_conf_perm"
 | 
						|
  permute_param {
 | 
						|
    order: 0
 | 
						|
    order: 2
 | 
						|
    order: 3
 | 
						|
    order: 1
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "fc7_mbox_conf_flat"
 | 
						|
  type: "Flatten"
 | 
						|
  bottom: "fc7_mbox_conf_perm"
 | 
						|
  top: "fc7_mbox_conf_flat"
 | 
						|
  flatten_param {
 | 
						|
    axis: 1
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "fc7_mbox_priorbox"
 | 
						|
  type: "PriorBox"
 | 
						|
  bottom: "fc7"
 | 
						|
  bottom: "data"
 | 
						|
  top: "fc7_mbox_priorbox"
 | 
						|
  prior_box_param {
 | 
						|
    min_size: 60.0
 | 
						|
    max_size: 111.0
 | 
						|
    aspect_ratio: 2
 | 
						|
    aspect_ratio: 3
 | 
						|
    flip: true
 | 
						|
    clip: false
 | 
						|
    variance: 0.1
 | 
						|
    variance: 0.1
 | 
						|
    variance: 0.2
 | 
						|
    variance: 0.2
 | 
						|
    step: 16
 | 
						|
    offset: 0.5
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "conv6_2_mbox_loc"
 | 
						|
  type: "Convolution"
 | 
						|
  bottom: "conv6_2_h"
 | 
						|
  top: "conv6_2_mbox_loc"
 | 
						|
  param {
 | 
						|
    lr_mult: 1
 | 
						|
    decay_mult: 1
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 2
 | 
						|
    decay_mult: 0
 | 
						|
  }
 | 
						|
  convolution_param {
 | 
						|
    num_output: 24
 | 
						|
    pad: 1
 | 
						|
    kernel_size: 3
 | 
						|
    stride: 1
 | 
						|
    weight_filler {
 | 
						|
      type: "xavier"
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "conv6_2_mbox_loc_perm"
 | 
						|
  type: "Permute"
 | 
						|
  bottom: "conv6_2_mbox_loc"
 | 
						|
  top: "conv6_2_mbox_loc_perm"
 | 
						|
  permute_param {
 | 
						|
    order: 0
 | 
						|
    order: 2
 | 
						|
    order: 3
 | 
						|
    order: 1
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "conv6_2_mbox_loc_flat"
 | 
						|
  type: "Flatten"
 | 
						|
  bottom: "conv6_2_mbox_loc_perm"
 | 
						|
  top: "conv6_2_mbox_loc_flat"
 | 
						|
  flatten_param {
 | 
						|
    axis: 1
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "conv6_2_mbox_conf"
 | 
						|
  type: "Convolution"
 | 
						|
  bottom: "conv6_2_h"
 | 
						|
  top: "conv6_2_mbox_conf"
 | 
						|
  param {
 | 
						|
    lr_mult: 1
 | 
						|
    decay_mult: 1
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 2
 | 
						|
    decay_mult: 0
 | 
						|
  }
 | 
						|
  convolution_param {
 | 
						|
    num_output: 12 # 126
 | 
						|
    pad: 1
 | 
						|
    kernel_size: 3
 | 
						|
    stride: 1
 | 
						|
    weight_filler {
 | 
						|
      type: "xavier"
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "conv6_2_mbox_conf_perm"
 | 
						|
  type: "Permute"
 | 
						|
  bottom: "conv6_2_mbox_conf"
 | 
						|
  top: "conv6_2_mbox_conf_perm"
 | 
						|
  permute_param {
 | 
						|
    order: 0
 | 
						|
    order: 2
 | 
						|
    order: 3
 | 
						|
    order: 1
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "conv6_2_mbox_conf_flat"
 | 
						|
  type: "Flatten"
 | 
						|
  bottom: "conv6_2_mbox_conf_perm"
 | 
						|
  top: "conv6_2_mbox_conf_flat"
 | 
						|
  flatten_param {
 | 
						|
    axis: 1
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "conv6_2_mbox_priorbox"
 | 
						|
  type: "PriorBox"
 | 
						|
  bottom: "conv6_2_h"
 | 
						|
  bottom: "data"
 | 
						|
  top: "conv6_2_mbox_priorbox"
 | 
						|
  prior_box_param {
 | 
						|
    min_size: 111.0
 | 
						|
    max_size: 162.0
 | 
						|
    aspect_ratio: 2
 | 
						|
    aspect_ratio: 3
 | 
						|
    flip: true
 | 
						|
    clip: false
 | 
						|
    variance: 0.1
 | 
						|
    variance: 0.1
 | 
						|
    variance: 0.2
 | 
						|
    variance: 0.2
 | 
						|
    step: 32
 | 
						|
    offset: 0.5
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "conv7_2_mbox_loc"
 | 
						|
  type: "Convolution"
 | 
						|
  bottom: "conv7_2_h"
 | 
						|
  top: "conv7_2_mbox_loc"
 | 
						|
  param {
 | 
						|
    lr_mult: 1
 | 
						|
    decay_mult: 1
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 2
 | 
						|
    decay_mult: 0
 | 
						|
  }
 | 
						|
  convolution_param {
 | 
						|
    num_output: 24
 | 
						|
    pad: 1
 | 
						|
    kernel_size: 3
 | 
						|
    stride: 1
 | 
						|
    weight_filler {
 | 
						|
      type: "xavier"
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "conv7_2_mbox_loc_perm"
 | 
						|
  type: "Permute"
 | 
						|
  bottom: "conv7_2_mbox_loc"
 | 
						|
  top: "conv7_2_mbox_loc_perm"
 | 
						|
  permute_param {
 | 
						|
    order: 0
 | 
						|
    order: 2
 | 
						|
    order: 3
 | 
						|
    order: 1
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "conv7_2_mbox_loc_flat"
 | 
						|
  type: "Flatten"
 | 
						|
  bottom: "conv7_2_mbox_loc_perm"
 | 
						|
  top: "conv7_2_mbox_loc_flat"
 | 
						|
  flatten_param {
 | 
						|
    axis: 1
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "conv7_2_mbox_conf"
 | 
						|
  type: "Convolution"
 | 
						|
  bottom: "conv7_2_h"
 | 
						|
  top: "conv7_2_mbox_conf"
 | 
						|
  param {
 | 
						|
    lr_mult: 1
 | 
						|
    decay_mult: 1
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 2
 | 
						|
    decay_mult: 0
 | 
						|
  }
 | 
						|
  convolution_param {
 | 
						|
    num_output: 12 # 126
 | 
						|
    pad: 1
 | 
						|
    kernel_size: 3
 | 
						|
    stride: 1
 | 
						|
    weight_filler {
 | 
						|
      type: "xavier"
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "conv7_2_mbox_conf_perm"
 | 
						|
  type: "Permute"
 | 
						|
  bottom: "conv7_2_mbox_conf"
 | 
						|
  top: "conv7_2_mbox_conf_perm"
 | 
						|
  permute_param {
 | 
						|
    order: 0
 | 
						|
    order: 2
 | 
						|
    order: 3
 | 
						|
    order: 1
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "conv7_2_mbox_conf_flat"
 | 
						|
  type: "Flatten"
 | 
						|
  bottom: "conv7_2_mbox_conf_perm"
 | 
						|
  top: "conv7_2_mbox_conf_flat"
 | 
						|
  flatten_param {
 | 
						|
    axis: 1
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "conv7_2_mbox_priorbox"
 | 
						|
  type: "PriorBox"
 | 
						|
  bottom: "conv7_2_h"
 | 
						|
  bottom: "data"
 | 
						|
  top: "conv7_2_mbox_priorbox"
 | 
						|
  prior_box_param {
 | 
						|
    min_size: 162.0
 | 
						|
    max_size: 213.0
 | 
						|
    aspect_ratio: 2
 | 
						|
    aspect_ratio: 3
 | 
						|
    flip: true
 | 
						|
    clip: false
 | 
						|
    variance: 0.1
 | 
						|
    variance: 0.1
 | 
						|
    variance: 0.2
 | 
						|
    variance: 0.2
 | 
						|
    step: 64
 | 
						|
    offset: 0.5
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "conv8_2_mbox_loc"
 | 
						|
  type: "Convolution"
 | 
						|
  bottom: "conv8_2_h"
 | 
						|
  top: "conv8_2_mbox_loc"
 | 
						|
  param {
 | 
						|
    lr_mult: 1
 | 
						|
    decay_mult: 1
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 2
 | 
						|
    decay_mult: 0
 | 
						|
  }
 | 
						|
  convolution_param {
 | 
						|
    num_output: 16
 | 
						|
    pad: 1
 | 
						|
    kernel_size: 3
 | 
						|
    stride: 1
 | 
						|
    weight_filler {
 | 
						|
      type: "xavier"
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "conv8_2_mbox_loc_perm"
 | 
						|
  type: "Permute"
 | 
						|
  bottom: "conv8_2_mbox_loc"
 | 
						|
  top: "conv8_2_mbox_loc_perm"
 | 
						|
  permute_param {
 | 
						|
    order: 0
 | 
						|
    order: 2
 | 
						|
    order: 3
 | 
						|
    order: 1
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "conv8_2_mbox_loc_flat"
 | 
						|
  type: "Flatten"
 | 
						|
  bottom: "conv8_2_mbox_loc_perm"
 | 
						|
  top: "conv8_2_mbox_loc_flat"
 | 
						|
  flatten_param {
 | 
						|
    axis: 1
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "conv8_2_mbox_conf"
 | 
						|
  type: "Convolution"
 | 
						|
  bottom: "conv8_2_h"
 | 
						|
  top: "conv8_2_mbox_conf"
 | 
						|
  param {
 | 
						|
    lr_mult: 1
 | 
						|
    decay_mult: 1
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 2
 | 
						|
    decay_mult: 0
 | 
						|
  }
 | 
						|
  convolution_param {
 | 
						|
    num_output: 8 # 84
 | 
						|
    pad: 1
 | 
						|
    kernel_size: 3
 | 
						|
    stride: 1
 | 
						|
    weight_filler {
 | 
						|
      type: "xavier"
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "conv8_2_mbox_conf_perm"
 | 
						|
  type: "Permute"
 | 
						|
  bottom: "conv8_2_mbox_conf"
 | 
						|
  top: "conv8_2_mbox_conf_perm"
 | 
						|
  permute_param {
 | 
						|
    order: 0
 | 
						|
    order: 2
 | 
						|
    order: 3
 | 
						|
    order: 1
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "conv8_2_mbox_conf_flat"
 | 
						|
  type: "Flatten"
 | 
						|
  bottom: "conv8_2_mbox_conf_perm"
 | 
						|
  top: "conv8_2_mbox_conf_flat"
 | 
						|
  flatten_param {
 | 
						|
    axis: 1
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "conv8_2_mbox_priorbox"
 | 
						|
  type: "PriorBox"
 | 
						|
  bottom: "conv8_2_h"
 | 
						|
  bottom: "data"
 | 
						|
  top: "conv8_2_mbox_priorbox"
 | 
						|
  prior_box_param {
 | 
						|
    min_size: 213.0
 | 
						|
    max_size: 264.0
 | 
						|
    aspect_ratio: 2
 | 
						|
    flip: true
 | 
						|
    clip: false
 | 
						|
    variance: 0.1
 | 
						|
    variance: 0.1
 | 
						|
    variance: 0.2
 | 
						|
    variance: 0.2
 | 
						|
    step: 100
 | 
						|
    offset: 0.5
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "conv9_2_mbox_loc"
 | 
						|
  type: "Convolution"
 | 
						|
  bottom: "conv9_2_h"
 | 
						|
  top: "conv9_2_mbox_loc"
 | 
						|
  param {
 | 
						|
    lr_mult: 1
 | 
						|
    decay_mult: 1
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 2
 | 
						|
    decay_mult: 0
 | 
						|
  }
 | 
						|
  convolution_param {
 | 
						|
    num_output: 16
 | 
						|
    pad: 1
 | 
						|
    kernel_size: 3
 | 
						|
    stride: 1
 | 
						|
    weight_filler {
 | 
						|
      type: "xavier"
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "conv9_2_mbox_loc_perm"
 | 
						|
  type: "Permute"
 | 
						|
  bottom: "conv9_2_mbox_loc"
 | 
						|
  top: "conv9_2_mbox_loc_perm"
 | 
						|
  permute_param {
 | 
						|
    order: 0
 | 
						|
    order: 2
 | 
						|
    order: 3
 | 
						|
    order: 1
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "conv9_2_mbox_loc_flat"
 | 
						|
  type: "Flatten"
 | 
						|
  bottom: "conv9_2_mbox_loc_perm"
 | 
						|
  top: "conv9_2_mbox_loc_flat"
 | 
						|
  flatten_param {
 | 
						|
    axis: 1
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "conv9_2_mbox_conf"
 | 
						|
  type: "Convolution"
 | 
						|
  bottom: "conv9_2_h"
 | 
						|
  top: "conv9_2_mbox_conf"
 | 
						|
  param {
 | 
						|
    lr_mult: 1
 | 
						|
    decay_mult: 1
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 2
 | 
						|
    decay_mult: 0
 | 
						|
  }
 | 
						|
  convolution_param {
 | 
						|
    num_output: 8 # 84
 | 
						|
    pad: 1
 | 
						|
    kernel_size: 3
 | 
						|
    stride: 1
 | 
						|
    weight_filler {
 | 
						|
      type: "xavier"
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "conv9_2_mbox_conf_perm"
 | 
						|
  type: "Permute"
 | 
						|
  bottom: "conv9_2_mbox_conf"
 | 
						|
  top: "conv9_2_mbox_conf_perm"
 | 
						|
  permute_param {
 | 
						|
    order: 0
 | 
						|
    order: 2
 | 
						|
    order: 3
 | 
						|
    order: 1
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "conv9_2_mbox_conf_flat"
 | 
						|
  type: "Flatten"
 | 
						|
  bottom: "conv9_2_mbox_conf_perm"
 | 
						|
  top: "conv9_2_mbox_conf_flat"
 | 
						|
  flatten_param {
 | 
						|
    axis: 1
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "conv9_2_mbox_priorbox"
 | 
						|
  type: "PriorBox"
 | 
						|
  bottom: "conv9_2_h"
 | 
						|
  bottom: "data"
 | 
						|
  top: "conv9_2_mbox_priorbox"
 | 
						|
  prior_box_param {
 | 
						|
    min_size: 264.0
 | 
						|
    max_size: 315.0
 | 
						|
    aspect_ratio: 2
 | 
						|
    flip: true
 | 
						|
    clip: false
 | 
						|
    variance: 0.1
 | 
						|
    variance: 0.1
 | 
						|
    variance: 0.2
 | 
						|
    variance: 0.2
 | 
						|
    step: 300
 | 
						|
    offset: 0.5
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "mbox_loc"
 | 
						|
  type: "Concat"
 | 
						|
  bottom: "conv4_3_norm_mbox_loc_flat"
 | 
						|
  bottom: "fc7_mbox_loc_flat"
 | 
						|
  bottom: "conv6_2_mbox_loc_flat"
 | 
						|
  bottom: "conv7_2_mbox_loc_flat"
 | 
						|
  bottom: "conv8_2_mbox_loc_flat"
 | 
						|
  bottom: "conv9_2_mbox_loc_flat"
 | 
						|
  top: "mbox_loc"
 | 
						|
  concat_param {
 | 
						|
    axis: 1
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "mbox_conf"
 | 
						|
  type: "Concat"
 | 
						|
  bottom: "conv4_3_norm_mbox_conf_flat"
 | 
						|
  bottom: "fc7_mbox_conf_flat"
 | 
						|
  bottom: "conv6_2_mbox_conf_flat"
 | 
						|
  bottom: "conv7_2_mbox_conf_flat"
 | 
						|
  bottom: "conv8_2_mbox_conf_flat"
 | 
						|
  bottom: "conv9_2_mbox_conf_flat"
 | 
						|
  top: "mbox_conf"
 | 
						|
  concat_param {
 | 
						|
    axis: 1
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "mbox_priorbox"
 | 
						|
  type: "Concat"
 | 
						|
  bottom: "conv4_3_norm_mbox_priorbox"
 | 
						|
  bottom: "fc7_mbox_priorbox"
 | 
						|
  bottom: "conv6_2_mbox_priorbox"
 | 
						|
  bottom: "conv7_2_mbox_priorbox"
 | 
						|
  bottom: "conv8_2_mbox_priorbox"
 | 
						|
  bottom: "conv9_2_mbox_priorbox"
 | 
						|
  top: "mbox_priorbox"
 | 
						|
  concat_param {
 | 
						|
    axis: 2
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
layer {
 | 
						|
  name: "mbox_conf_reshape"
 | 
						|
  type: "Reshape"
 | 
						|
  bottom: "mbox_conf"
 | 
						|
  top: "mbox_conf_reshape"
 | 
						|
  reshape_param {
 | 
						|
    shape {
 | 
						|
      dim: 0
 | 
						|
      dim: -1
 | 
						|
      dim: 2
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "mbox_conf_softmax"
 | 
						|
  type: "Softmax"
 | 
						|
  bottom: "mbox_conf_reshape"
 | 
						|
  top: "mbox_conf_softmax"
 | 
						|
  softmax_param {
 | 
						|
    axis: 2
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "mbox_conf_flatten"
 | 
						|
  type: "Flatten"
 | 
						|
  bottom: "mbox_conf_softmax"
 | 
						|
  top: "mbox_conf_flatten"
 | 
						|
  flatten_param {
 | 
						|
    axis: 1
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
layer {
 | 
						|
  name: "detection_out"
 | 
						|
  type: "DetectionOutput"
 | 
						|
  bottom: "mbox_loc"
 | 
						|
  bottom: "mbox_conf_flatten"
 | 
						|
  bottom: "mbox_priorbox"
 | 
						|
  top: "detection_out"
 | 
						|
  include {
 | 
						|
    phase: TEST
 | 
						|
  }
 | 
						|
  detection_output_param {
 | 
						|
    num_classes: 2
 | 
						|
    share_location: true
 | 
						|
    background_label_id: 0
 | 
						|
    nms_param {
 | 
						|
      nms_threshold: 0.45
 | 
						|
      top_k: 400
 | 
						|
    }
 | 
						|
    code_type: CENTER_SIZE
 | 
						|
    keep_top_k: 200
 | 
						|
    confidence_threshold: 0.01
 | 
						|
    clip: 1
 | 
						|
  }
 | 
						|
}
 |