1739 lines
71 KiB
Python
1739 lines
71 KiB
Python
"""Test the validation module"""
|
|
|
|
import sys
|
|
import warnings
|
|
import tempfile
|
|
import os
|
|
from time import sleep
|
|
|
|
import pytest
|
|
import numpy as np
|
|
from scipy.sparse import coo_matrix, csr_matrix
|
|
from sklearn.exceptions import FitFailedWarning
|
|
|
|
from sklearn.model_selection.tests.test_search import FailingClassifier
|
|
|
|
from sklearn.utils._testing import assert_almost_equal
|
|
from sklearn.utils._testing import assert_raises
|
|
from sklearn.utils._testing import assert_raise_message
|
|
from sklearn.utils._testing import assert_warns
|
|
from sklearn.utils._testing import assert_warns_message
|
|
from sklearn.utils._testing import assert_raises_regex
|
|
from sklearn.utils._testing import assert_array_almost_equal
|
|
from sklearn.utils._testing import assert_array_equal
|
|
from sklearn.utils._testing import assert_allclose
|
|
from sklearn.utils._mocking import CheckingClassifier, MockDataFrame
|
|
|
|
from sklearn.model_selection import cross_val_score, ShuffleSplit
|
|
from sklearn.model_selection import cross_val_predict
|
|
from sklearn.model_selection import cross_validate
|
|
from sklearn.model_selection import permutation_test_score
|
|
from sklearn.model_selection import KFold
|
|
from sklearn.model_selection import StratifiedKFold
|
|
from sklearn.model_selection import LeaveOneOut
|
|
from sklearn.model_selection import LeaveOneGroupOut
|
|
from sklearn.model_selection import LeavePGroupsOut
|
|
from sklearn.model_selection import GroupKFold
|
|
from sklearn.model_selection import GroupShuffleSplit
|
|
from sklearn.model_selection import learning_curve
|
|
from sklearn.model_selection import validation_curve
|
|
from sklearn.model_selection._validation import _check_is_permutation
|
|
from sklearn.model_selection._validation import _fit_and_score
|
|
from sklearn.model_selection._validation import _score
|
|
|
|
from sklearn.datasets import make_regression
|
|
from sklearn.datasets import load_boston
|
|
from sklearn.datasets import load_iris
|
|
from sklearn.datasets import load_digits
|
|
from sklearn.metrics import explained_variance_score
|
|
from sklearn.metrics import make_scorer
|
|
from sklearn.metrics import accuracy_score
|
|
from sklearn.metrics import confusion_matrix
|
|
from sklearn.metrics import precision_recall_fscore_support
|
|
from sklearn.metrics import precision_score
|
|
from sklearn.metrics import r2_score
|
|
from sklearn.metrics import check_scoring
|
|
|
|
from sklearn.linear_model import Ridge, LogisticRegression, SGDClassifier
|
|
from sklearn.linear_model import PassiveAggressiveClassifier, RidgeClassifier
|
|
from sklearn.ensemble import RandomForestClassifier
|
|
from sklearn.neighbors import KNeighborsClassifier
|
|
from sklearn.svm import SVC
|
|
from sklearn.cluster import KMeans
|
|
|
|
from sklearn.impute import SimpleImputer
|
|
|
|
from sklearn.preprocessing import LabelEncoder
|
|
from sklearn.pipeline import Pipeline
|
|
|
|
from io import StringIO
|
|
from sklearn.base import BaseEstimator
|
|
from sklearn.base import clone
|
|
from sklearn.multiclass import OneVsRestClassifier
|
|
from sklearn.utils import shuffle
|
|
from sklearn.datasets import make_classification
|
|
from sklearn.datasets import make_multilabel_classification
|
|
|
|
from sklearn.model_selection.tests.common import OneTimeSplitter
|
|
from sklearn.model_selection import GridSearchCV
|
|
|
|
|
|
try:
|
|
WindowsError
|
|
except NameError:
|
|
WindowsError = None
|
|
|
|
|
|
class MockImprovingEstimator(BaseEstimator):
|
|
"""Dummy classifier to test the learning curve"""
|
|
def __init__(self, n_max_train_sizes):
|
|
self.n_max_train_sizes = n_max_train_sizes
|
|
self.train_sizes = 0
|
|
self.X_subset = None
|
|
|
|
def fit(self, X_subset, y_subset=None):
|
|
self.X_subset = X_subset
|
|
self.train_sizes = X_subset.shape[0]
|
|
return self
|
|
|
|
def predict(self, X):
|
|
raise NotImplementedError
|
|
|
|
def score(self, X=None, Y=None):
|
|
# training score becomes worse (2 -> 1), test error better (0 -> 1)
|
|
if self._is_training_data(X):
|
|
return 2. - float(self.train_sizes) / self.n_max_train_sizes
|
|
else:
|
|
return float(self.train_sizes) / self.n_max_train_sizes
|
|
|
|
def _is_training_data(self, X):
|
|
return X is self.X_subset
|
|
|
|
|
|
class MockIncrementalImprovingEstimator(MockImprovingEstimator):
|
|
"""Dummy classifier that provides partial_fit"""
|
|
def __init__(self, n_max_train_sizes):
|
|
super().__init__(n_max_train_sizes)
|
|
self.x = None
|
|
|
|
def _is_training_data(self, X):
|
|
return self.x in X
|
|
|
|
def partial_fit(self, X, y=None, **params):
|
|
self.train_sizes += X.shape[0]
|
|
self.x = X[0]
|
|
|
|
|
|
class MockEstimatorWithParameter(BaseEstimator):
|
|
"""Dummy classifier to test the validation curve"""
|
|
def __init__(self, param=0.5):
|
|
self.X_subset = None
|
|
self.param = param
|
|
|
|
def fit(self, X_subset, y_subset):
|
|
self.X_subset = X_subset
|
|
self.train_sizes = X_subset.shape[0]
|
|
return self
|
|
|
|
def predict(self, X):
|
|
raise NotImplementedError
|
|
|
|
def score(self, X=None, y=None):
|
|
return self.param if self._is_training_data(X) else 1 - self.param
|
|
|
|
def _is_training_data(self, X):
|
|
return X is self.X_subset
|
|
|
|
|
|
class MockEstimatorWithSingleFitCallAllowed(MockEstimatorWithParameter):
|
|
"""Dummy classifier that disallows repeated calls of fit method"""
|
|
|
|
def fit(self, X_subset, y_subset):
|
|
assert not hasattr(self, 'fit_called_'), \
|
|
'fit is called the second time'
|
|
self.fit_called_ = True
|
|
return super().fit(X_subset, y_subset)
|
|
|
|
def predict(self, X):
|
|
raise NotImplementedError
|
|
|
|
|
|
class MockClassifier:
|
|
"""Dummy classifier to test the cross-validation"""
|
|
|
|
def __init__(self, a=0, allow_nd=False):
|
|
self.a = a
|
|
self.allow_nd = allow_nd
|
|
|
|
def fit(self, X, Y=None, sample_weight=None, class_prior=None,
|
|
sparse_sample_weight=None, sparse_param=None, dummy_int=None,
|
|
dummy_str=None, dummy_obj=None, callback=None):
|
|
"""The dummy arguments are to test that this fit function can
|
|
accept non-array arguments through cross-validation, such as:
|
|
- int
|
|
- str (this is actually array-like)
|
|
- object
|
|
- function
|
|
"""
|
|
self.dummy_int = dummy_int
|
|
self.dummy_str = dummy_str
|
|
self.dummy_obj = dummy_obj
|
|
if callback is not None:
|
|
callback(self)
|
|
|
|
if self.allow_nd:
|
|
X = X.reshape(len(X), -1)
|
|
if X.ndim >= 3 and not self.allow_nd:
|
|
raise ValueError('X cannot be d')
|
|
if sample_weight is not None:
|
|
assert sample_weight.shape[0] == X.shape[0], (
|
|
'MockClassifier extra fit_param '
|
|
'sample_weight.shape[0] is {0}, should be {1}'
|
|
.format(sample_weight.shape[0], X.shape[0]))
|
|
if class_prior is not None:
|
|
assert class_prior.shape[0] == len(np.unique(y)), (
|
|
'MockClassifier extra fit_param class_prior.shape[0]'
|
|
' is {0}, should be {1}'.format(class_prior.shape[0],
|
|
len(np.unique(y))))
|
|
if sparse_sample_weight is not None:
|
|
fmt = ('MockClassifier extra fit_param sparse_sample_weight'
|
|
'.shape[0] is {0}, should be {1}')
|
|
assert sparse_sample_weight.shape[0] == X.shape[0], \
|
|
fmt.format(sparse_sample_weight.shape[0], X.shape[0])
|
|
if sparse_param is not None:
|
|
fmt = ('MockClassifier extra fit_param sparse_param.shape '
|
|
'is ({0}, {1}), should be ({2}, {3})')
|
|
assert sparse_param.shape == P_sparse.shape, (
|
|
fmt.format(sparse_param.shape[0],
|
|
sparse_param.shape[1],
|
|
P_sparse.shape[0], P_sparse.shape[1]))
|
|
return self
|
|
|
|
def predict(self, T):
|
|
if self.allow_nd:
|
|
T = T.reshape(len(T), -1)
|
|
return T[:, 0]
|
|
|
|
def predict_proba(self, T):
|
|
return T
|
|
|
|
def score(self, X=None, Y=None):
|
|
return 1. / (1 + np.abs(self.a))
|
|
|
|
def get_params(self, deep=False):
|
|
return {'a': self.a, 'allow_nd': self.allow_nd}
|
|
|
|
|
|
# XXX: use 2D array, since 1D X is being detected as a single sample in
|
|
# check_consistent_length
|
|
X = np.ones((10, 2))
|
|
X_sparse = coo_matrix(X)
|
|
y = np.array([0, 0, 1, 1, 2, 2, 3, 3, 4, 4])
|
|
# The number of samples per class needs to be > n_splits,
|
|
# for StratifiedKFold(n_splits=3)
|
|
y2 = np.array([1, 1, 1, 2, 2, 2, 3, 3, 3, 3])
|
|
P_sparse = coo_matrix(np.eye(5))
|
|
|
|
|
|
def test_cross_val_score():
|
|
clf = MockClassifier()
|
|
|
|
for a in range(-10, 10):
|
|
clf.a = a
|
|
# Smoke test
|
|
scores = cross_val_score(clf, X, y2)
|
|
assert_array_equal(scores, clf.score(X, y2))
|
|
|
|
# test with multioutput y
|
|
multioutput_y = np.column_stack([y2, y2[::-1]])
|
|
scores = cross_val_score(clf, X_sparse, multioutput_y)
|
|
assert_array_equal(scores, clf.score(X_sparse, multioutput_y))
|
|
|
|
scores = cross_val_score(clf, X_sparse, y2)
|
|
assert_array_equal(scores, clf.score(X_sparse, y2))
|
|
|
|
# test with multioutput y
|
|
scores = cross_val_score(clf, X_sparse, multioutput_y)
|
|
assert_array_equal(scores, clf.score(X_sparse, multioutput_y))
|
|
|
|
# test with X and y as list
|
|
list_check = lambda x: isinstance(x, list)
|
|
clf = CheckingClassifier(check_X=list_check)
|
|
scores = cross_val_score(clf, X.tolist(), y2.tolist(), cv=3)
|
|
|
|
clf = CheckingClassifier(check_y=list_check)
|
|
scores = cross_val_score(clf, X, y2.tolist(), cv=3)
|
|
|
|
assert_raises(ValueError, cross_val_score, clf, X, y2, scoring="sklearn")
|
|
|
|
# test with 3d X and
|
|
X_3d = X[:, :, np.newaxis]
|
|
clf = MockClassifier(allow_nd=True)
|
|
scores = cross_val_score(clf, X_3d, y2)
|
|
|
|
clf = MockClassifier(allow_nd=False)
|
|
assert_raises(ValueError, cross_val_score, clf, X_3d, y2,
|
|
error_score='raise')
|
|
|
|
|
|
def test_cross_validate_many_jobs():
|
|
# regression test for #12154: cv='warn' with n_jobs>1 trigger a copy of
|
|
# the parameters leading to a failure in check_cv due to cv is 'warn'
|
|
# instead of cv == 'warn'.
|
|
X, y = load_iris(return_X_y=True)
|
|
clf = SVC(gamma='auto')
|
|
grid = GridSearchCV(clf, param_grid={'C': [1, 10]})
|
|
cross_validate(grid, X, y, n_jobs=2)
|
|
|
|
|
|
def test_cross_validate_invalid_scoring_param():
|
|
X, y = make_classification(random_state=0)
|
|
estimator = MockClassifier()
|
|
|
|
# Test the errors
|
|
error_message_regexp = ".*must be unique strings.*"
|
|
|
|
# List/tuple of callables should raise a message advising users to use
|
|
# dict of names to callables mapping
|
|
assert_raises_regex(ValueError, error_message_regexp,
|
|
cross_validate, estimator, X, y,
|
|
scoring=(make_scorer(precision_score),
|
|
make_scorer(accuracy_score)))
|
|
assert_raises_regex(ValueError, error_message_regexp,
|
|
cross_validate, estimator, X, y,
|
|
scoring=(make_scorer(precision_score),))
|
|
|
|
# So should empty lists/tuples
|
|
assert_raises_regex(ValueError, error_message_regexp + "Empty list.*",
|
|
cross_validate, estimator, X, y, scoring=())
|
|
|
|
# So should duplicated entries
|
|
assert_raises_regex(ValueError, error_message_regexp + "Duplicate.*",
|
|
cross_validate, estimator, X, y,
|
|
scoring=('f1_micro', 'f1_micro'))
|
|
|
|
# Nested Lists should raise a generic error message
|
|
assert_raises_regex(ValueError, error_message_regexp,
|
|
cross_validate, estimator, X, y,
|
|
scoring=[[make_scorer(precision_score)]])
|
|
|
|
error_message_regexp = (".*should either be.*string or callable.*for "
|
|
"single.*.*dict.*for multi.*")
|
|
|
|
# Empty dict should raise invalid scoring error
|
|
assert_raises_regex(ValueError, "An empty dict",
|
|
cross_validate, estimator, X, y, scoring=(dict()))
|
|
|
|
# And so should any other invalid entry
|
|
assert_raises_regex(ValueError, error_message_regexp,
|
|
cross_validate, estimator, X, y, scoring=5)
|
|
|
|
multiclass_scorer = make_scorer(precision_recall_fscore_support)
|
|
|
|
# Multiclass Scorers that return multiple values are not supported yet
|
|
assert_raises_regex(ValueError,
|
|
"Classification metrics can't handle a mix of "
|
|
"binary and continuous targets",
|
|
cross_validate, estimator, X, y,
|
|
scoring=multiclass_scorer)
|
|
assert_raises_regex(ValueError,
|
|
"Classification metrics can't handle a mix of "
|
|
"binary and continuous targets",
|
|
cross_validate, estimator, X, y,
|
|
scoring={"foo": multiclass_scorer})
|
|
|
|
multivalued_scorer = make_scorer(confusion_matrix)
|
|
|
|
# Multiclass Scorers that return multiple values are not supported yet
|
|
assert_raises_regex(ValueError, "scoring must return a number, got",
|
|
cross_validate, SVC(), X, y,
|
|
scoring=multivalued_scorer)
|
|
assert_raises_regex(ValueError, "scoring must return a number, got",
|
|
cross_validate, SVC(), X, y,
|
|
scoring={"foo": multivalued_scorer})
|
|
|
|
assert_raises_regex(ValueError, "'mse' is not a valid scoring value.",
|
|
cross_validate, SVC(), X, y, scoring="mse")
|
|
|
|
|
|
def test_cross_validate():
|
|
# Compute train and test mse/r2 scores
|
|
cv = KFold()
|
|
|
|
# Regression
|
|
X_reg, y_reg = make_regression(n_samples=30, random_state=0)
|
|
reg = Ridge(random_state=0)
|
|
|
|
# Classification
|
|
X_clf, y_clf = make_classification(n_samples=30, random_state=0)
|
|
clf = SVC(kernel="linear", random_state=0)
|
|
|
|
for X, y, est in ((X_reg, y_reg, reg), (X_clf, y_clf, clf)):
|
|
# It's okay to evaluate regression metrics on classification too
|
|
mse_scorer = check_scoring(est, scoring='neg_mean_squared_error')
|
|
r2_scorer = check_scoring(est, scoring='r2')
|
|
train_mse_scores = []
|
|
test_mse_scores = []
|
|
train_r2_scores = []
|
|
test_r2_scores = []
|
|
fitted_estimators = []
|
|
for train, test in cv.split(X, y):
|
|
est = clone(reg).fit(X[train], y[train])
|
|
train_mse_scores.append(mse_scorer(est, X[train], y[train]))
|
|
train_r2_scores.append(r2_scorer(est, X[train], y[train]))
|
|
test_mse_scores.append(mse_scorer(est, X[test], y[test]))
|
|
test_r2_scores.append(r2_scorer(est, X[test], y[test]))
|
|
fitted_estimators.append(est)
|
|
|
|
train_mse_scores = np.array(train_mse_scores)
|
|
test_mse_scores = np.array(test_mse_scores)
|
|
train_r2_scores = np.array(train_r2_scores)
|
|
test_r2_scores = np.array(test_r2_scores)
|
|
fitted_estimators = np.array(fitted_estimators)
|
|
|
|
scores = (train_mse_scores, test_mse_scores, train_r2_scores,
|
|
test_r2_scores, fitted_estimators)
|
|
|
|
check_cross_validate_single_metric(est, X, y, scores)
|
|
check_cross_validate_multi_metric(est, X, y, scores)
|
|
|
|
|
|
def check_cross_validate_single_metric(clf, X, y, scores):
|
|
(train_mse_scores, test_mse_scores, train_r2_scores,
|
|
test_r2_scores, fitted_estimators) = scores
|
|
# Test single metric evaluation when scoring is string or singleton list
|
|
for (return_train_score, dict_len) in ((True, 4), (False, 3)):
|
|
# Single metric passed as a string
|
|
if return_train_score:
|
|
mse_scores_dict = cross_validate(clf, X, y,
|
|
scoring='neg_mean_squared_error',
|
|
return_train_score=True)
|
|
assert_array_almost_equal(mse_scores_dict['train_score'],
|
|
train_mse_scores)
|
|
else:
|
|
mse_scores_dict = cross_validate(clf, X, y,
|
|
scoring='neg_mean_squared_error',
|
|
return_train_score=False)
|
|
assert isinstance(mse_scores_dict, dict)
|
|
assert len(mse_scores_dict) == dict_len
|
|
assert_array_almost_equal(mse_scores_dict['test_score'],
|
|
test_mse_scores)
|
|
|
|
# Single metric passed as a list
|
|
if return_train_score:
|
|
# It must be True by default - deprecated
|
|
r2_scores_dict = cross_validate(clf, X, y, scoring=['r2'],
|
|
return_train_score=True)
|
|
assert_array_almost_equal(r2_scores_dict['train_r2'],
|
|
train_r2_scores, True)
|
|
else:
|
|
r2_scores_dict = cross_validate(clf, X, y, scoring=['r2'],
|
|
return_train_score=False)
|
|
assert isinstance(r2_scores_dict, dict)
|
|
assert len(r2_scores_dict) == dict_len
|
|
assert_array_almost_equal(r2_scores_dict['test_r2'], test_r2_scores)
|
|
|
|
# Test return_estimator option
|
|
mse_scores_dict = cross_validate(clf, X, y,
|
|
scoring='neg_mean_squared_error',
|
|
return_estimator=True)
|
|
for k, est in enumerate(mse_scores_dict['estimator']):
|
|
assert_almost_equal(est.coef_, fitted_estimators[k].coef_)
|
|
assert_almost_equal(est.intercept_, fitted_estimators[k].intercept_)
|
|
|
|
|
|
def check_cross_validate_multi_metric(clf, X, y, scores):
|
|
# Test multimetric evaluation when scoring is a list / dict
|
|
(train_mse_scores, test_mse_scores, train_r2_scores,
|
|
test_r2_scores, fitted_estimators) = scores
|
|
all_scoring = (('r2', 'neg_mean_squared_error'),
|
|
{'r2': make_scorer(r2_score),
|
|
'neg_mean_squared_error': 'neg_mean_squared_error'})
|
|
|
|
keys_sans_train = {'test_r2', 'test_neg_mean_squared_error',
|
|
'fit_time', 'score_time'}
|
|
keys_with_train = keys_sans_train.union(
|
|
{'train_r2', 'train_neg_mean_squared_error'})
|
|
|
|
for return_train_score in (True, False):
|
|
for scoring in all_scoring:
|
|
if return_train_score:
|
|
# return_train_score must be True by default - deprecated
|
|
cv_results = cross_validate(clf, X, y, scoring=scoring,
|
|
return_train_score=True)
|
|
assert_array_almost_equal(cv_results['train_r2'],
|
|
train_r2_scores)
|
|
assert_array_almost_equal(
|
|
cv_results['train_neg_mean_squared_error'],
|
|
train_mse_scores)
|
|
else:
|
|
cv_results = cross_validate(clf, X, y, scoring=scoring,
|
|
return_train_score=False)
|
|
assert isinstance(cv_results, dict)
|
|
assert (set(cv_results.keys()) ==
|
|
(keys_with_train if return_train_score
|
|
else keys_sans_train))
|
|
assert_array_almost_equal(cv_results['test_r2'], test_r2_scores)
|
|
assert_array_almost_equal(
|
|
cv_results['test_neg_mean_squared_error'], test_mse_scores)
|
|
|
|
# Make sure all the arrays are of np.ndarray type
|
|
assert type(cv_results['test_r2']) == np.ndarray
|
|
assert (type(cv_results['test_neg_mean_squared_error']) ==
|
|
np.ndarray)
|
|
assert type(cv_results['fit_time']) == np.ndarray
|
|
assert type(cv_results['score_time']) == np.ndarray
|
|
|
|
# Ensure all the times are within sane limits
|
|
assert np.all(cv_results['fit_time'] >= 0)
|
|
assert np.all(cv_results['fit_time'] < 10)
|
|
assert np.all(cv_results['score_time'] >= 0)
|
|
assert np.all(cv_results['score_time'] < 10)
|
|
|
|
|
|
def test_cross_val_score_predict_groups():
|
|
# Check if ValueError (when groups is None) propagates to cross_val_score
|
|
# and cross_val_predict
|
|
# And also check if groups is correctly passed to the cv object
|
|
X, y = make_classification(n_samples=20, n_classes=2, random_state=0)
|
|
|
|
clf = SVC(kernel="linear")
|
|
|
|
group_cvs = [LeaveOneGroupOut(), LeavePGroupsOut(2), GroupKFold(),
|
|
GroupShuffleSplit()]
|
|
for cv in group_cvs:
|
|
assert_raise_message(ValueError,
|
|
"The 'groups' parameter should not be None.",
|
|
cross_val_score, estimator=clf, X=X, y=y, cv=cv)
|
|
assert_raise_message(ValueError,
|
|
"The 'groups' parameter should not be None.",
|
|
cross_val_predict, estimator=clf, X=X, y=y, cv=cv)
|
|
|
|
|
|
@pytest.mark.filterwarnings('ignore: Using or importing the ABCs from')
|
|
def test_cross_val_score_pandas():
|
|
# check cross_val_score doesn't destroy pandas dataframe
|
|
types = [(MockDataFrame, MockDataFrame)]
|
|
try:
|
|
from pandas import Series, DataFrame
|
|
types.append((Series, DataFrame))
|
|
except ImportError:
|
|
pass
|
|
for TargetType, InputFeatureType in types:
|
|
# X dataframe, y series
|
|
# 3 fold cross val is used so we need atleast 3 samples per class
|
|
X_df, y_ser = InputFeatureType(X), TargetType(y2)
|
|
check_df = lambda x: isinstance(x, InputFeatureType)
|
|
check_series = lambda x: isinstance(x, TargetType)
|
|
clf = CheckingClassifier(check_X=check_df, check_y=check_series)
|
|
cross_val_score(clf, X_df, y_ser, cv=3)
|
|
|
|
|
|
def test_cross_val_score_mask():
|
|
# test that cross_val_score works with boolean masks
|
|
svm = SVC(kernel="linear")
|
|
iris = load_iris()
|
|
X, y = iris.data, iris.target
|
|
kfold = KFold(5)
|
|
scores_indices = cross_val_score(svm, X, y, cv=kfold)
|
|
kfold = KFold(5)
|
|
cv_masks = []
|
|
for train, test in kfold.split(X, y):
|
|
mask_train = np.zeros(len(y), dtype=np.bool)
|
|
mask_test = np.zeros(len(y), dtype=np.bool)
|
|
mask_train[train] = 1
|
|
mask_test[test] = 1
|
|
cv_masks.append((train, test))
|
|
scores_masks = cross_val_score(svm, X, y, cv=cv_masks)
|
|
assert_array_equal(scores_indices, scores_masks)
|
|
|
|
|
|
def test_cross_val_score_precomputed():
|
|
# test for svm with precomputed kernel
|
|
svm = SVC(kernel="precomputed")
|
|
iris = load_iris()
|
|
X, y = iris.data, iris.target
|
|
linear_kernel = np.dot(X, X.T)
|
|
score_precomputed = cross_val_score(svm, linear_kernel, y)
|
|
svm = SVC(kernel="linear")
|
|
score_linear = cross_val_score(svm, X, y)
|
|
assert_array_almost_equal(score_precomputed, score_linear)
|
|
|
|
# test with callable
|
|
svm = SVC(kernel=lambda x, y: np.dot(x, y.T))
|
|
score_callable = cross_val_score(svm, X, y)
|
|
assert_array_almost_equal(score_precomputed, score_callable)
|
|
|
|
# Error raised for non-square X
|
|
svm = SVC(kernel="precomputed")
|
|
assert_raises(ValueError, cross_val_score, svm, X, y)
|
|
|
|
# test error is raised when the precomputed kernel is not array-like
|
|
# or sparse
|
|
assert_raises(ValueError, cross_val_score, svm,
|
|
linear_kernel.tolist(), y)
|
|
|
|
|
|
def test_cross_val_score_fit_params():
|
|
clf = MockClassifier()
|
|
n_samples = X.shape[0]
|
|
n_classes = len(np.unique(y))
|
|
|
|
W_sparse = coo_matrix((np.array([1]), (np.array([1]), np.array([0]))),
|
|
shape=(10, 1))
|
|
P_sparse = coo_matrix(np.eye(5))
|
|
|
|
DUMMY_INT = 42
|
|
DUMMY_STR = '42'
|
|
DUMMY_OBJ = object()
|
|
|
|
def assert_fit_params(clf):
|
|
# Function to test that the values are passed correctly to the
|
|
# classifier arguments for non-array type
|
|
|
|
assert clf.dummy_int == DUMMY_INT
|
|
assert clf.dummy_str == DUMMY_STR
|
|
assert clf.dummy_obj == DUMMY_OBJ
|
|
|
|
fit_params = {'sample_weight': np.ones(n_samples),
|
|
'class_prior': np.full(n_classes, 1. / n_classes),
|
|
'sparse_sample_weight': W_sparse,
|
|
'sparse_param': P_sparse,
|
|
'dummy_int': DUMMY_INT,
|
|
'dummy_str': DUMMY_STR,
|
|
'dummy_obj': DUMMY_OBJ,
|
|
'callback': assert_fit_params}
|
|
cross_val_score(clf, X, y, fit_params=fit_params)
|
|
|
|
|
|
def test_cross_val_score_score_func():
|
|
clf = MockClassifier()
|
|
_score_func_args = []
|
|
|
|
def score_func(y_test, y_predict):
|
|
_score_func_args.append((y_test, y_predict))
|
|
return 1.0
|
|
|
|
with warnings.catch_warnings(record=True):
|
|
scoring = make_scorer(score_func)
|
|
score = cross_val_score(clf, X, y, scoring=scoring, cv=3)
|
|
assert_array_equal(score, [1.0, 1.0, 1.0])
|
|
# Test that score function is called only 3 times (for cv=3)
|
|
assert len(_score_func_args) == 3
|
|
|
|
|
|
def test_cross_val_score_errors():
|
|
class BrokenEstimator:
|
|
pass
|
|
|
|
assert_raises(TypeError, cross_val_score, BrokenEstimator(), X)
|
|
|
|
|
|
def test_cross_val_score_with_score_func_classification():
|
|
iris = load_iris()
|
|
clf = SVC(kernel='linear')
|
|
|
|
# Default score (should be the accuracy score)
|
|
scores = cross_val_score(clf, iris.data, iris.target)
|
|
assert_array_almost_equal(scores, [0.97, 1., 0.97, 0.97, 1.], 2)
|
|
|
|
# Correct classification score (aka. zero / one score) - should be the
|
|
# same as the default estimator score
|
|
zo_scores = cross_val_score(clf, iris.data, iris.target,
|
|
scoring="accuracy")
|
|
assert_array_almost_equal(zo_scores, [0.97, 1., 0.97, 0.97, 1.], 2)
|
|
|
|
# F1 score (class are balanced so f1_score should be equal to zero/one
|
|
# score
|
|
f1_scores = cross_val_score(clf, iris.data, iris.target,
|
|
scoring="f1_weighted")
|
|
assert_array_almost_equal(f1_scores, [0.97, 1., 0.97, 0.97, 1.], 2)
|
|
|
|
|
|
def test_cross_val_score_with_score_func_regression():
|
|
X, y = make_regression(n_samples=30, n_features=20, n_informative=5,
|
|
random_state=0)
|
|
reg = Ridge()
|
|
|
|
# Default score of the Ridge regression estimator
|
|
scores = cross_val_score(reg, X, y)
|
|
assert_array_almost_equal(scores, [0.94, 0.97, 0.97, 0.99, 0.92], 2)
|
|
|
|
# R2 score (aka. determination coefficient) - should be the
|
|
# same as the default estimator score
|
|
r2_scores = cross_val_score(reg, X, y, scoring="r2")
|
|
assert_array_almost_equal(r2_scores, [0.94, 0.97, 0.97, 0.99, 0.92], 2)
|
|
|
|
# Mean squared error; this is a loss function, so "scores" are negative
|
|
neg_mse_scores = cross_val_score(reg, X, y,
|
|
scoring="neg_mean_squared_error")
|
|
expected_neg_mse = np.array([-763.07, -553.16, -274.38, -273.26, -1681.99])
|
|
assert_array_almost_equal(neg_mse_scores, expected_neg_mse, 2)
|
|
|
|
# Explained variance
|
|
scoring = make_scorer(explained_variance_score)
|
|
ev_scores = cross_val_score(reg, X, y, scoring=scoring)
|
|
assert_array_almost_equal(ev_scores, [0.94, 0.97, 0.97, 0.99, 0.92], 2)
|
|
|
|
|
|
def test_permutation_score():
|
|
iris = load_iris()
|
|
X = iris.data
|
|
X_sparse = coo_matrix(X)
|
|
y = iris.target
|
|
svm = SVC(kernel='linear')
|
|
cv = StratifiedKFold(2)
|
|
|
|
score, scores, pvalue = permutation_test_score(
|
|
svm, X, y, n_permutations=30, cv=cv, scoring="accuracy")
|
|
assert score > 0.9
|
|
assert_almost_equal(pvalue, 0.0, 1)
|
|
|
|
score_group, _, pvalue_group = permutation_test_score(
|
|
svm, X, y, n_permutations=30, cv=cv, scoring="accuracy",
|
|
groups=np.ones(y.size), random_state=0)
|
|
assert score_group == score
|
|
assert pvalue_group == pvalue
|
|
|
|
# check that we obtain the same results with a sparse representation
|
|
svm_sparse = SVC(kernel='linear')
|
|
cv_sparse = StratifiedKFold(2)
|
|
score_group, _, pvalue_group = permutation_test_score(
|
|
svm_sparse, X_sparse, y, n_permutations=30, cv=cv_sparse,
|
|
scoring="accuracy", groups=np.ones(y.size), random_state=0)
|
|
|
|
assert score_group == score
|
|
assert pvalue_group == pvalue
|
|
|
|
# test with custom scoring object
|
|
def custom_score(y_true, y_pred):
|
|
return (((y_true == y_pred).sum() - (y_true != y_pred).sum()) /
|
|
y_true.shape[0])
|
|
|
|
scorer = make_scorer(custom_score)
|
|
score, _, pvalue = permutation_test_score(
|
|
svm, X, y, n_permutations=100, scoring=scorer, cv=cv, random_state=0)
|
|
assert_almost_equal(score, .93, 2)
|
|
assert_almost_equal(pvalue, 0.01, 3)
|
|
|
|
# set random y
|
|
y = np.mod(np.arange(len(y)), 3)
|
|
|
|
score, scores, pvalue = permutation_test_score(
|
|
svm, X, y, n_permutations=30, cv=cv, scoring="accuracy")
|
|
|
|
assert score < 0.5
|
|
assert pvalue > 0.2
|
|
|
|
|
|
def test_permutation_test_score_allow_nans():
|
|
# Check that permutation_test_score allows input data with NaNs
|
|
X = np.arange(200, dtype=np.float64).reshape(10, -1)
|
|
X[2, :] = np.nan
|
|
y = np.repeat([0, 1], X.shape[0] / 2)
|
|
p = Pipeline([
|
|
('imputer', SimpleImputer(strategy='mean', missing_values=np.nan)),
|
|
('classifier', MockClassifier()),
|
|
])
|
|
permutation_test_score(p, X, y)
|
|
|
|
|
|
def test_cross_val_score_allow_nans():
|
|
# Check that cross_val_score allows input data with NaNs
|
|
X = np.arange(200, dtype=np.float64).reshape(10, -1)
|
|
X[2, :] = np.nan
|
|
y = np.repeat([0, 1], X.shape[0] / 2)
|
|
p = Pipeline([
|
|
('imputer', SimpleImputer(strategy='mean', missing_values=np.nan)),
|
|
('classifier', MockClassifier()),
|
|
])
|
|
cross_val_score(p, X, y)
|
|
|
|
|
|
def test_cross_val_score_multilabel():
|
|
X = np.array([[-3, 4], [2, 4], [3, 3], [0, 2], [-3, 1],
|
|
[-2, 1], [0, 0], [-2, -1], [-1, -2], [1, -2]])
|
|
y = np.array([[1, 1], [0, 1], [0, 1], [0, 1], [1, 1],
|
|
[0, 1], [1, 0], [1, 1], [1, 0], [0, 0]])
|
|
clf = KNeighborsClassifier(n_neighbors=1)
|
|
scoring_micro = make_scorer(precision_score, average='micro')
|
|
scoring_macro = make_scorer(precision_score, average='macro')
|
|
scoring_samples = make_scorer(precision_score, average='samples')
|
|
score_micro = cross_val_score(clf, X, y, scoring=scoring_micro)
|
|
score_macro = cross_val_score(clf, X, y, scoring=scoring_macro)
|
|
score_samples = cross_val_score(clf, X, y, scoring=scoring_samples)
|
|
assert_almost_equal(score_micro, [1, 1 / 2, 3 / 4, 1 / 2, 1 / 3])
|
|
assert_almost_equal(score_macro, [1, 1 / 2, 3 / 4, 1 / 2, 1 / 4])
|
|
assert_almost_equal(score_samples, [1, 1 / 2, 3 / 4, 1 / 2, 1 / 4])
|
|
|
|
|
|
def test_cross_val_predict():
|
|
X, y = load_boston(return_X_y=True)
|
|
cv = KFold()
|
|
|
|
est = Ridge()
|
|
|
|
# Naive loop (should be same as cross_val_predict):
|
|
preds2 = np.zeros_like(y)
|
|
for train, test in cv.split(X, y):
|
|
est.fit(X[train], y[train])
|
|
preds2[test] = est.predict(X[test])
|
|
|
|
preds = cross_val_predict(est, X, y, cv=cv)
|
|
assert_array_almost_equal(preds, preds2)
|
|
|
|
preds = cross_val_predict(est, X, y)
|
|
assert len(preds) == len(y)
|
|
|
|
cv = LeaveOneOut()
|
|
preds = cross_val_predict(est, X, y, cv=cv)
|
|
assert len(preds) == len(y)
|
|
|
|
Xsp = X.copy()
|
|
Xsp *= (Xsp > np.median(Xsp))
|
|
Xsp = coo_matrix(Xsp)
|
|
preds = cross_val_predict(est, Xsp, y)
|
|
assert_array_almost_equal(len(preds), len(y))
|
|
|
|
preds = cross_val_predict(KMeans(), X)
|
|
assert len(preds) == len(y)
|
|
|
|
class BadCV():
|
|
def split(self, X, y=None, groups=None):
|
|
for i in range(4):
|
|
yield np.array([0, 1, 2, 3]), np.array([4, 5, 6, 7, 8])
|
|
|
|
assert_raises(ValueError, cross_val_predict, est, X, y, cv=BadCV())
|
|
|
|
X, y = load_iris(return_X_y=True)
|
|
|
|
warning_message = ('Number of classes in training fold (2) does '
|
|
'not match total number of classes (3). '
|
|
'Results may not be appropriate for your use case.')
|
|
assert_warns_message(RuntimeWarning, warning_message,
|
|
cross_val_predict,
|
|
LogisticRegression(solver="liblinear"),
|
|
X, y, method='predict_proba', cv=KFold(2))
|
|
|
|
|
|
def test_cross_val_predict_decision_function_shape():
|
|
X, y = make_classification(n_classes=2, n_samples=50, random_state=0)
|
|
|
|
preds = cross_val_predict(LogisticRegression(solver="liblinear"), X, y,
|
|
method='decision_function')
|
|
assert preds.shape == (50,)
|
|
|
|
X, y = load_iris(return_X_y=True)
|
|
|
|
preds = cross_val_predict(LogisticRegression(solver="liblinear"), X, y,
|
|
method='decision_function')
|
|
assert preds.shape == (150, 3)
|
|
|
|
# This specifically tests imbalanced splits for binary
|
|
# classification with decision_function. This is only
|
|
# applicable to classifiers that can be fit on a single
|
|
# class.
|
|
X = X[:100]
|
|
y = y[:100]
|
|
assert_raise_message(ValueError,
|
|
'Only 1 class/es in training fold,'
|
|
' but 2 in overall dataset. This'
|
|
' is not supported for decision_function'
|
|
' with imbalanced folds. To fix '
|
|
'this, use a cross-validation technique '
|
|
'resulting in properly stratified folds',
|
|
cross_val_predict, RidgeClassifier(), X, y,
|
|
method='decision_function', cv=KFold(2))
|
|
|
|
X, y = load_digits(return_X_y=True)
|
|
est = SVC(kernel='linear', decision_function_shape='ovo')
|
|
|
|
preds = cross_val_predict(est,
|
|
X, y,
|
|
method='decision_function')
|
|
assert preds.shape == (1797, 45)
|
|
|
|
ind = np.argsort(y)
|
|
X, y = X[ind], y[ind]
|
|
assert_raises_regex(ValueError,
|
|
r'Output shape \(599L?, 21L?\) of decision_function '
|
|
r'does not match number of classes \(7\) in fold. '
|
|
'Irregular decision_function .*',
|
|
cross_val_predict, est, X, y,
|
|
cv=KFold(n_splits=3), method='decision_function')
|
|
|
|
|
|
def test_cross_val_predict_predict_proba_shape():
|
|
X, y = make_classification(n_classes=2, n_samples=50, random_state=0)
|
|
|
|
preds = cross_val_predict(LogisticRegression(solver="liblinear"), X, y,
|
|
method='predict_proba')
|
|
assert preds.shape == (50, 2)
|
|
|
|
X, y = load_iris(return_X_y=True)
|
|
|
|
preds = cross_val_predict(LogisticRegression(solver="liblinear"), X, y,
|
|
method='predict_proba')
|
|
assert preds.shape == (150, 3)
|
|
|
|
|
|
def test_cross_val_predict_predict_log_proba_shape():
|
|
X, y = make_classification(n_classes=2, n_samples=50, random_state=0)
|
|
|
|
preds = cross_val_predict(LogisticRegression(solver="liblinear"), X, y,
|
|
method='predict_log_proba')
|
|
assert preds.shape == (50, 2)
|
|
|
|
X, y = load_iris(return_X_y=True)
|
|
|
|
preds = cross_val_predict(LogisticRegression(solver="liblinear"), X, y,
|
|
method='predict_log_proba')
|
|
assert preds.shape == (150, 3)
|
|
|
|
|
|
def test_cross_val_predict_input_types():
|
|
iris = load_iris()
|
|
X, y = iris.data, iris.target
|
|
X_sparse = coo_matrix(X)
|
|
multioutput_y = np.column_stack([y, y[::-1]])
|
|
|
|
clf = Ridge(fit_intercept=False, random_state=0)
|
|
# 3 fold cv is used --> atleast 3 samples per class
|
|
# Smoke test
|
|
predictions = cross_val_predict(clf, X, y)
|
|
assert predictions.shape == (150,)
|
|
|
|
# test with multioutput y
|
|
predictions = cross_val_predict(clf, X_sparse, multioutput_y)
|
|
assert predictions.shape == (150, 2)
|
|
|
|
predictions = cross_val_predict(clf, X_sparse, y)
|
|
assert_array_equal(predictions.shape, (150,))
|
|
|
|
# test with multioutput y
|
|
predictions = cross_val_predict(clf, X_sparse, multioutput_y)
|
|
assert_array_equal(predictions.shape, (150, 2))
|
|
|
|
# test with X and y as list
|
|
list_check = lambda x: isinstance(x, list)
|
|
clf = CheckingClassifier(check_X=list_check)
|
|
predictions = cross_val_predict(clf, X.tolist(), y.tolist())
|
|
|
|
clf = CheckingClassifier(check_y=list_check)
|
|
predictions = cross_val_predict(clf, X, y.tolist())
|
|
|
|
# test with X and y as list and non empty method
|
|
predictions = cross_val_predict(LogisticRegression(solver="liblinear"),
|
|
X.tolist(),
|
|
y.tolist(), method='decision_function')
|
|
predictions = cross_val_predict(LogisticRegression(solver="liblinear"),
|
|
X,
|
|
y.tolist(), method='decision_function')
|
|
|
|
# test with 3d X and
|
|
X_3d = X[:, :, np.newaxis]
|
|
check_3d = lambda x: x.ndim == 3
|
|
clf = CheckingClassifier(check_X=check_3d)
|
|
predictions = cross_val_predict(clf, X_3d, y)
|
|
assert_array_equal(predictions.shape, (150,))
|
|
|
|
|
|
@pytest.mark.filterwarnings('ignore: Using or importing the ABCs from')
|
|
# python3.7 deprecation warnings in pandas via matplotlib :-/
|
|
def test_cross_val_predict_pandas():
|
|
# check cross_val_score doesn't destroy pandas dataframe
|
|
types = [(MockDataFrame, MockDataFrame)]
|
|
try:
|
|
from pandas import Series, DataFrame
|
|
types.append((Series, DataFrame))
|
|
except ImportError:
|
|
pass
|
|
for TargetType, InputFeatureType in types:
|
|
# X dataframe, y series
|
|
X_df, y_ser = InputFeatureType(X), TargetType(y2)
|
|
check_df = lambda x: isinstance(x, InputFeatureType)
|
|
check_series = lambda x: isinstance(x, TargetType)
|
|
clf = CheckingClassifier(check_X=check_df, check_y=check_series)
|
|
cross_val_predict(clf, X_df, y_ser, cv=3)
|
|
|
|
|
|
def test_cross_val_predict_unbalanced():
|
|
X, y = make_classification(n_samples=100, n_features=2, n_redundant=0,
|
|
n_informative=2, n_clusters_per_class=1,
|
|
random_state=1)
|
|
# Change the first sample to a new class
|
|
y[0] = 2
|
|
clf = LogisticRegression(random_state=1, solver="liblinear")
|
|
cv = StratifiedKFold(n_splits=2)
|
|
train, test = list(cv.split(X, y))
|
|
yhat_proba = cross_val_predict(clf, X, y, cv=cv, method="predict_proba")
|
|
assert y[test[0]][0] == 2 # sanity check for further assertions
|
|
assert np.all(yhat_proba[test[0]][:, 2] == 0)
|
|
assert np.all(yhat_proba[test[0]][:, 0:1] > 0)
|
|
assert np.all(yhat_proba[test[1]] > 0)
|
|
assert_array_almost_equal(yhat_proba.sum(axis=1), np.ones(y.shape),
|
|
decimal=12)
|
|
|
|
|
|
def test_cross_val_predict_y_none():
|
|
# ensure that cross_val_predict works when y is None
|
|
mock_classifier = MockClassifier()
|
|
rng = np.random.RandomState(42)
|
|
X = rng.rand(100, 10)
|
|
y_hat = cross_val_predict(mock_classifier, X, y=None, cv=5,
|
|
method='predict')
|
|
assert_allclose(X[:, 0], y_hat)
|
|
y_hat_proba = cross_val_predict(mock_classifier, X, y=None, cv=5,
|
|
method='predict_proba')
|
|
assert_allclose(X, y_hat_proba)
|
|
|
|
|
|
def test_cross_val_score_sparse_fit_params():
|
|
iris = load_iris()
|
|
X, y = iris.data, iris.target
|
|
clf = MockClassifier()
|
|
fit_params = {'sparse_sample_weight': coo_matrix(np.eye(X.shape[0]))}
|
|
a = cross_val_score(clf, X, y, fit_params=fit_params, cv=3)
|
|
assert_array_equal(a, np.ones(3))
|
|
|
|
|
|
def test_learning_curve():
|
|
n_samples = 30
|
|
n_splits = 3
|
|
X, y = make_classification(n_samples=n_samples, n_features=1,
|
|
n_informative=1, n_redundant=0, n_classes=2,
|
|
n_clusters_per_class=1, random_state=0)
|
|
estimator = MockImprovingEstimator(n_samples * ((n_splits - 1) / n_splits))
|
|
for shuffle_train in [False, True]:
|
|
with warnings.catch_warnings(record=True) as w:
|
|
train_sizes, train_scores, test_scores, fit_times, score_times = \
|
|
learning_curve(estimator, X, y, cv=KFold(n_splits=n_splits),
|
|
train_sizes=np.linspace(0.1, 1.0, 10),
|
|
shuffle=shuffle_train, return_times=True)
|
|
if len(w) > 0:
|
|
raise RuntimeError("Unexpected warning: %r" % w[0].message)
|
|
assert train_scores.shape == (10, 3)
|
|
assert test_scores.shape == (10, 3)
|
|
assert fit_times.shape == (10, 3)
|
|
assert score_times.shape == (10, 3)
|
|
assert_array_equal(train_sizes, np.linspace(2, 20, 10))
|
|
assert_array_almost_equal(train_scores.mean(axis=1),
|
|
np.linspace(1.9, 1.0, 10))
|
|
assert_array_almost_equal(test_scores.mean(axis=1),
|
|
np.linspace(0.1, 1.0, 10))
|
|
|
|
# Cannot use assert_array_almost_equal for fit and score times because
|
|
# the values are hardware-dependant
|
|
assert fit_times.dtype == "float64"
|
|
assert score_times.dtype == "float64"
|
|
|
|
# Test a custom cv splitter that can iterate only once
|
|
with warnings.catch_warnings(record=True) as w:
|
|
train_sizes2, train_scores2, test_scores2 = learning_curve(
|
|
estimator, X, y,
|
|
cv=OneTimeSplitter(n_splits=n_splits, n_samples=n_samples),
|
|
train_sizes=np.linspace(0.1, 1.0, 10),
|
|
shuffle=shuffle_train)
|
|
if len(w) > 0:
|
|
raise RuntimeError("Unexpected warning: %r" % w[0].message)
|
|
assert_array_almost_equal(train_scores2, train_scores)
|
|
assert_array_almost_equal(test_scores2, test_scores)
|
|
|
|
|
|
def test_learning_curve_unsupervised():
|
|
X, _ = make_classification(n_samples=30, n_features=1, n_informative=1,
|
|
n_redundant=0, n_classes=2,
|
|
n_clusters_per_class=1, random_state=0)
|
|
estimator = MockImprovingEstimator(20)
|
|
train_sizes, train_scores, test_scores = learning_curve(
|
|
estimator, X, y=None, cv=3, train_sizes=np.linspace(0.1, 1.0, 10))
|
|
assert_array_equal(train_sizes, np.linspace(2, 20, 10))
|
|
assert_array_almost_equal(train_scores.mean(axis=1),
|
|
np.linspace(1.9, 1.0, 10))
|
|
assert_array_almost_equal(test_scores.mean(axis=1),
|
|
np.linspace(0.1, 1.0, 10))
|
|
|
|
|
|
def test_learning_curve_verbose():
|
|
X, y = make_classification(n_samples=30, n_features=1, n_informative=1,
|
|
n_redundant=0, n_classes=2,
|
|
n_clusters_per_class=1, random_state=0)
|
|
estimator = MockImprovingEstimator(20)
|
|
|
|
old_stdout = sys.stdout
|
|
sys.stdout = StringIO()
|
|
try:
|
|
train_sizes, train_scores, test_scores = \
|
|
learning_curve(estimator, X, y, cv=3, verbose=1)
|
|
finally:
|
|
out = sys.stdout.getvalue()
|
|
sys.stdout.close()
|
|
sys.stdout = old_stdout
|
|
|
|
assert("[learning_curve]" in out)
|
|
|
|
|
|
def test_learning_curve_incremental_learning_not_possible():
|
|
X, y = make_classification(n_samples=2, n_features=1, n_informative=1,
|
|
n_redundant=0, n_classes=2,
|
|
n_clusters_per_class=1, random_state=0)
|
|
# The mockup does not have partial_fit()
|
|
estimator = MockImprovingEstimator(1)
|
|
assert_raises(ValueError, learning_curve, estimator, X, y,
|
|
exploit_incremental_learning=True)
|
|
|
|
|
|
def test_learning_curve_incremental_learning():
|
|
X, y = make_classification(n_samples=30, n_features=1, n_informative=1,
|
|
n_redundant=0, n_classes=2,
|
|
n_clusters_per_class=1, random_state=0)
|
|
estimator = MockIncrementalImprovingEstimator(20)
|
|
for shuffle_train in [False, True]:
|
|
train_sizes, train_scores, test_scores = learning_curve(
|
|
estimator, X, y, cv=3, exploit_incremental_learning=True,
|
|
train_sizes=np.linspace(0.1, 1.0, 10), shuffle=shuffle_train)
|
|
assert_array_equal(train_sizes, np.linspace(2, 20, 10))
|
|
assert_array_almost_equal(train_scores.mean(axis=1),
|
|
np.linspace(1.9, 1.0, 10))
|
|
assert_array_almost_equal(test_scores.mean(axis=1),
|
|
np.linspace(0.1, 1.0, 10))
|
|
|
|
|
|
def test_learning_curve_incremental_learning_unsupervised():
|
|
X, _ = make_classification(n_samples=30, n_features=1, n_informative=1,
|
|
n_redundant=0, n_classes=2,
|
|
n_clusters_per_class=1, random_state=0)
|
|
estimator = MockIncrementalImprovingEstimator(20)
|
|
train_sizes, train_scores, test_scores = learning_curve(
|
|
estimator, X, y=None, cv=3, exploit_incremental_learning=True,
|
|
train_sizes=np.linspace(0.1, 1.0, 10))
|
|
assert_array_equal(train_sizes, np.linspace(2, 20, 10))
|
|
assert_array_almost_equal(train_scores.mean(axis=1),
|
|
np.linspace(1.9, 1.0, 10))
|
|
assert_array_almost_equal(test_scores.mean(axis=1),
|
|
np.linspace(0.1, 1.0, 10))
|
|
|
|
|
|
def test_learning_curve_batch_and_incremental_learning_are_equal():
|
|
X, y = make_classification(n_samples=30, n_features=1, n_informative=1,
|
|
n_redundant=0, n_classes=2,
|
|
n_clusters_per_class=1, random_state=0)
|
|
train_sizes = np.linspace(0.2, 1.0, 5)
|
|
estimator = PassiveAggressiveClassifier(max_iter=1, tol=None,
|
|
shuffle=False)
|
|
|
|
train_sizes_inc, train_scores_inc, test_scores_inc = \
|
|
learning_curve(
|
|
estimator, X, y, train_sizes=train_sizes,
|
|
cv=3, exploit_incremental_learning=True)
|
|
train_sizes_batch, train_scores_batch, test_scores_batch = \
|
|
learning_curve(
|
|
estimator, X, y, cv=3, train_sizes=train_sizes,
|
|
exploit_incremental_learning=False)
|
|
|
|
assert_array_equal(train_sizes_inc, train_sizes_batch)
|
|
assert_array_almost_equal(train_scores_inc.mean(axis=1),
|
|
train_scores_batch.mean(axis=1))
|
|
assert_array_almost_equal(test_scores_inc.mean(axis=1),
|
|
test_scores_batch.mean(axis=1))
|
|
|
|
|
|
def test_learning_curve_n_sample_range_out_of_bounds():
|
|
X, y = make_classification(n_samples=30, n_features=1, n_informative=1,
|
|
n_redundant=0, n_classes=2,
|
|
n_clusters_per_class=1, random_state=0)
|
|
estimator = MockImprovingEstimator(20)
|
|
assert_raises(ValueError, learning_curve, estimator, X, y, cv=3,
|
|
train_sizes=[0, 1])
|
|
assert_raises(ValueError, learning_curve, estimator, X, y, cv=3,
|
|
train_sizes=[0.0, 1.0])
|
|
assert_raises(ValueError, learning_curve, estimator, X, y, cv=3,
|
|
train_sizes=[0.1, 1.1])
|
|
assert_raises(ValueError, learning_curve, estimator, X, y, cv=3,
|
|
train_sizes=[0, 20])
|
|
assert_raises(ValueError, learning_curve, estimator, X, y, cv=3,
|
|
train_sizes=[1, 21])
|
|
|
|
|
|
def test_learning_curve_remove_duplicate_sample_sizes():
|
|
X, y = make_classification(n_samples=3, n_features=1, n_informative=1,
|
|
n_redundant=0, n_classes=2,
|
|
n_clusters_per_class=1, random_state=0)
|
|
estimator = MockImprovingEstimator(2)
|
|
train_sizes, _, _ = assert_warns(
|
|
RuntimeWarning, learning_curve, estimator, X, y, cv=3,
|
|
train_sizes=np.linspace(0.33, 1.0, 3))
|
|
assert_array_equal(train_sizes, [1, 2])
|
|
|
|
|
|
def test_learning_curve_with_boolean_indices():
|
|
X, y = make_classification(n_samples=30, n_features=1, n_informative=1,
|
|
n_redundant=0, n_classes=2,
|
|
n_clusters_per_class=1, random_state=0)
|
|
estimator = MockImprovingEstimator(20)
|
|
cv = KFold(n_splits=3)
|
|
train_sizes, train_scores, test_scores = learning_curve(
|
|
estimator, X, y, cv=cv, train_sizes=np.linspace(0.1, 1.0, 10))
|
|
assert_array_equal(train_sizes, np.linspace(2, 20, 10))
|
|
assert_array_almost_equal(train_scores.mean(axis=1),
|
|
np.linspace(1.9, 1.0, 10))
|
|
assert_array_almost_equal(test_scores.mean(axis=1),
|
|
np.linspace(0.1, 1.0, 10))
|
|
|
|
|
|
def test_learning_curve_with_shuffle():
|
|
# Following test case was designed this way to verify the code
|
|
# changes made in pull request: #7506.
|
|
X = np.array([[1, 2], [3, 4], [5, 6], [7, 8], [11, 12], [13, 14], [15, 16],
|
|
[17, 18], [19, 20], [7, 8], [9, 10], [11, 12], [13, 14],
|
|
[15, 16], [17, 18]])
|
|
y = np.array([1, 1, 1, 2, 3, 4, 1, 1, 2, 3, 4, 1, 2, 3, 4])
|
|
groups = np.array([1, 1, 1, 1, 1, 1, 3, 3, 3, 3, 3, 4, 4, 4, 4])
|
|
# Splits on these groups fail without shuffle as the first iteration
|
|
# of the learning curve doesn't contain label 4 in the training set.
|
|
estimator = PassiveAggressiveClassifier(max_iter=5, tol=None,
|
|
shuffle=False)
|
|
|
|
cv = GroupKFold(n_splits=2)
|
|
train_sizes_batch, train_scores_batch, test_scores_batch = learning_curve(
|
|
estimator, X, y, cv=cv, n_jobs=1, train_sizes=np.linspace(0.3, 1.0, 3),
|
|
groups=groups, shuffle=True, random_state=2)
|
|
assert_array_almost_equal(train_scores_batch.mean(axis=1),
|
|
np.array([0.75, 0.3, 0.36111111]))
|
|
assert_array_almost_equal(test_scores_batch.mean(axis=1),
|
|
np.array([0.36111111, 0.25, 0.25]))
|
|
assert_raises(ValueError, learning_curve, estimator, X, y, cv=cv, n_jobs=1,
|
|
train_sizes=np.linspace(0.3, 1.0, 3), groups=groups,
|
|
error_score='raise')
|
|
|
|
train_sizes_inc, train_scores_inc, test_scores_inc = learning_curve(
|
|
estimator, X, y, cv=cv, n_jobs=1, train_sizes=np.linspace(0.3, 1.0, 3),
|
|
groups=groups, shuffle=True, random_state=2,
|
|
exploit_incremental_learning=True)
|
|
assert_array_almost_equal(train_scores_inc.mean(axis=1),
|
|
train_scores_batch.mean(axis=1))
|
|
assert_array_almost_equal(test_scores_inc.mean(axis=1),
|
|
test_scores_batch.mean(axis=1))
|
|
|
|
|
|
def test_validation_curve():
|
|
X, y = make_classification(n_samples=2, n_features=1, n_informative=1,
|
|
n_redundant=0, n_classes=2,
|
|
n_clusters_per_class=1, random_state=0)
|
|
param_range = np.linspace(0, 1, 10)
|
|
with warnings.catch_warnings(record=True) as w:
|
|
train_scores, test_scores = validation_curve(
|
|
MockEstimatorWithParameter(), X, y, param_name="param",
|
|
param_range=param_range, cv=2
|
|
)
|
|
if len(w) > 0:
|
|
raise RuntimeError("Unexpected warning: %r" % w[0].message)
|
|
|
|
assert_array_almost_equal(train_scores.mean(axis=1), param_range)
|
|
assert_array_almost_equal(test_scores.mean(axis=1), 1 - param_range)
|
|
|
|
|
|
def test_validation_curve_clone_estimator():
|
|
X, y = make_classification(n_samples=2, n_features=1, n_informative=1,
|
|
n_redundant=0, n_classes=2,
|
|
n_clusters_per_class=1, random_state=0)
|
|
|
|
param_range = np.linspace(1, 0, 10)
|
|
_, _ = validation_curve(
|
|
MockEstimatorWithSingleFitCallAllowed(), X, y,
|
|
param_name="param", param_range=param_range, cv=2
|
|
)
|
|
|
|
|
|
def test_validation_curve_cv_splits_consistency():
|
|
n_samples = 100
|
|
n_splits = 5
|
|
X, y = make_classification(n_samples=100, random_state=0)
|
|
|
|
scores1 = validation_curve(SVC(kernel='linear', random_state=0), X, y,
|
|
param_name='C',
|
|
param_range=[0.1, 0.1, 0.2, 0.2],
|
|
cv=OneTimeSplitter(n_splits=n_splits,
|
|
n_samples=n_samples))
|
|
# The OneTimeSplitter is a non-re-entrant cv splitter. Unless, the
|
|
# `split` is called for each parameter, the following should produce
|
|
# identical results for param setting 1 and param setting 2 as both have
|
|
# the same C value.
|
|
assert_array_almost_equal(*np.vsplit(np.hstack(scores1)[(0, 2, 1, 3), :],
|
|
2))
|
|
|
|
scores2 = validation_curve(SVC(kernel='linear', random_state=0), X, y,
|
|
param_name='C',
|
|
param_range=[0.1, 0.1, 0.2, 0.2],
|
|
cv=KFold(n_splits=n_splits, shuffle=True))
|
|
|
|
# For scores2, compare the 1st and 2nd parameter's scores
|
|
# (Since the C value for 1st two param setting is 0.1, they must be
|
|
# consistent unless the train test folds differ between the param settings)
|
|
assert_array_almost_equal(*np.vsplit(np.hstack(scores2)[(0, 2, 1, 3), :],
|
|
2))
|
|
|
|
scores3 = validation_curve(SVC(kernel='linear', random_state=0), X, y,
|
|
param_name='C',
|
|
param_range=[0.1, 0.1, 0.2, 0.2],
|
|
cv=KFold(n_splits=n_splits))
|
|
|
|
# OneTimeSplitter is basically unshuffled KFold(n_splits=5). Sanity check.
|
|
assert_array_almost_equal(np.array(scores3), np.array(scores1))
|
|
|
|
|
|
def test_check_is_permutation():
|
|
rng = np.random.RandomState(0)
|
|
p = np.arange(100)
|
|
rng.shuffle(p)
|
|
assert _check_is_permutation(p, 100)
|
|
assert not _check_is_permutation(np.delete(p, 23), 100)
|
|
|
|
p[0] = 23
|
|
assert not _check_is_permutation(p, 100)
|
|
|
|
# Check if the additional duplicate indices are caught
|
|
assert not _check_is_permutation(np.hstack((p, 0)), 100)
|
|
|
|
|
|
def test_cross_val_predict_sparse_prediction():
|
|
# check that cross_val_predict gives same result for sparse and dense input
|
|
X, y = make_multilabel_classification(n_classes=2, n_labels=1,
|
|
allow_unlabeled=False,
|
|
return_indicator=True,
|
|
random_state=1)
|
|
X_sparse = csr_matrix(X)
|
|
y_sparse = csr_matrix(y)
|
|
classif = OneVsRestClassifier(SVC(kernel='linear'))
|
|
preds = cross_val_predict(classif, X, y, cv=10)
|
|
preds_sparse = cross_val_predict(classif, X_sparse, y_sparse, cv=10)
|
|
preds_sparse = preds_sparse.toarray()
|
|
assert_array_almost_equal(preds_sparse, preds)
|
|
|
|
|
|
def check_cross_val_predict_binary(est, X, y, method):
|
|
"""Helper for tests of cross_val_predict with binary classification"""
|
|
cv = KFold(n_splits=3, shuffle=False)
|
|
|
|
# Generate expected outputs
|
|
if y.ndim == 1:
|
|
exp_shape = (len(X),) if method == 'decision_function' else (len(X), 2)
|
|
else:
|
|
exp_shape = y.shape
|
|
expected_predictions = np.zeros(exp_shape)
|
|
for train, test in cv.split(X, y):
|
|
est = clone(est).fit(X[train], y[train])
|
|
expected_predictions[test] = getattr(est, method)(X[test])
|
|
|
|
# Check actual outputs for several representations of y
|
|
for tg in [y, y + 1, y - 2, y.astype('str')]:
|
|
assert_allclose(cross_val_predict(est, X, tg, method=method, cv=cv),
|
|
expected_predictions)
|
|
|
|
|
|
def check_cross_val_predict_multiclass(est, X, y, method):
|
|
"""Helper for tests of cross_val_predict with multiclass classification"""
|
|
cv = KFold(n_splits=3, shuffle=False)
|
|
|
|
# Generate expected outputs
|
|
float_min = np.finfo(np.float64).min
|
|
default_values = {'decision_function': float_min,
|
|
'predict_log_proba': float_min,
|
|
'predict_proba': 0}
|
|
expected_predictions = np.full((len(X), len(set(y))),
|
|
default_values[method],
|
|
dtype=np.float64)
|
|
_, y_enc = np.unique(y, return_inverse=True)
|
|
for train, test in cv.split(X, y_enc):
|
|
est = clone(est).fit(X[train], y_enc[train])
|
|
fold_preds = getattr(est, method)(X[test])
|
|
i_cols_fit = np.unique(y_enc[train])
|
|
expected_predictions[np.ix_(test, i_cols_fit)] = fold_preds
|
|
|
|
# Check actual outputs for several representations of y
|
|
for tg in [y, y + 1, y - 2, y.astype('str')]:
|
|
assert_allclose(cross_val_predict(est, X, tg, method=method, cv=cv),
|
|
expected_predictions)
|
|
|
|
|
|
def check_cross_val_predict_multilabel(est, X, y, method):
|
|
"""Check the output of cross_val_predict for 2D targets using
|
|
Estimators which provide a predictions as a list with one
|
|
element per class.
|
|
"""
|
|
cv = KFold(n_splits=3, shuffle=False)
|
|
|
|
# Create empty arrays of the correct size to hold outputs
|
|
float_min = np.finfo(np.float64).min
|
|
default_values = {'decision_function': float_min,
|
|
'predict_log_proba': float_min,
|
|
'predict_proba': 0}
|
|
n_targets = y.shape[1]
|
|
expected_preds = []
|
|
for i_col in range(n_targets):
|
|
n_classes_in_label = len(set(y[:, i_col]))
|
|
if n_classes_in_label == 2 and method == 'decision_function':
|
|
exp_shape = (len(X),)
|
|
else:
|
|
exp_shape = (len(X), n_classes_in_label)
|
|
expected_preds.append(np.full(exp_shape, default_values[method],
|
|
dtype=np.float64))
|
|
|
|
# Generate expected outputs
|
|
y_enc_cols = [np.unique(y[:, i], return_inverse=True)[1][:, np.newaxis]
|
|
for i in range(y.shape[1])]
|
|
y_enc = np.concatenate(y_enc_cols, axis=1)
|
|
for train, test in cv.split(X, y_enc):
|
|
est = clone(est).fit(X[train], y_enc[train])
|
|
fold_preds = getattr(est, method)(X[test])
|
|
for i_col in range(n_targets):
|
|
fold_cols = np.unique(y_enc[train][:, i_col])
|
|
if expected_preds[i_col].ndim == 1:
|
|
# Decision function with <=2 classes
|
|
expected_preds[i_col][test] = fold_preds[i_col]
|
|
else:
|
|
idx = np.ix_(test, fold_cols)
|
|
expected_preds[i_col][idx] = fold_preds[i_col]
|
|
|
|
# Check actual outputs for several representations of y
|
|
for tg in [y, y + 1, y - 2, y.astype('str')]:
|
|
cv_predict_output = cross_val_predict(est, X, tg, method=method, cv=cv)
|
|
assert len(cv_predict_output) == len(expected_preds)
|
|
for i in range(len(cv_predict_output)):
|
|
assert_allclose(cv_predict_output[i], expected_preds[i])
|
|
|
|
|
|
def check_cross_val_predict_with_method_binary(est):
|
|
# This test includes the decision_function with two classes.
|
|
# This is a special case: it has only one column of output.
|
|
X, y = make_classification(n_classes=2, random_state=0)
|
|
for method in ['decision_function', 'predict_proba', 'predict_log_proba']:
|
|
check_cross_val_predict_binary(est, X, y, method)
|
|
|
|
|
|
def check_cross_val_predict_with_method_multiclass(est):
|
|
iris = load_iris()
|
|
X, y = iris.data, iris.target
|
|
X, y = shuffle(X, y, random_state=0)
|
|
for method in ['decision_function', 'predict_proba', 'predict_log_proba']:
|
|
check_cross_val_predict_multiclass(est, X, y, method)
|
|
|
|
|
|
def test_cross_val_predict_with_method():
|
|
check_cross_val_predict_with_method_binary(
|
|
LogisticRegression(solver="liblinear"))
|
|
check_cross_val_predict_with_method_multiclass(
|
|
LogisticRegression(solver="liblinear"))
|
|
|
|
|
|
def test_cross_val_predict_method_checking():
|
|
# Regression test for issue #9639. Tests that cross_val_predict does not
|
|
# check estimator methods (e.g. predict_proba) before fitting
|
|
iris = load_iris()
|
|
X, y = iris.data, iris.target
|
|
X, y = shuffle(X, y, random_state=0)
|
|
for method in ['decision_function', 'predict_proba', 'predict_log_proba']:
|
|
est = SGDClassifier(loss='log', random_state=2)
|
|
check_cross_val_predict_multiclass(est, X, y, method)
|
|
|
|
|
|
def test_gridsearchcv_cross_val_predict_with_method():
|
|
iris = load_iris()
|
|
X, y = iris.data, iris.target
|
|
X, y = shuffle(X, y, random_state=0)
|
|
est = GridSearchCV(LogisticRegression(random_state=42, solver="liblinear"),
|
|
{'C': [0.1, 1]},
|
|
cv=2)
|
|
for method in ['decision_function', 'predict_proba', 'predict_log_proba']:
|
|
check_cross_val_predict_multiclass(est, X, y, method)
|
|
|
|
|
|
def test_cross_val_predict_with_method_multilabel_ovr():
|
|
# OVR does multilabel predictions, but only arrays of
|
|
# binary indicator columns. The output of predict_proba
|
|
# is a 2D array with shape (n_samples, n_classes).
|
|
n_samp = 100
|
|
n_classes = 4
|
|
X, y = make_multilabel_classification(n_samples=n_samp, n_labels=3,
|
|
n_classes=n_classes, n_features=5,
|
|
random_state=42)
|
|
est = OneVsRestClassifier(LogisticRegression(solver="liblinear",
|
|
random_state=0))
|
|
for method in ['predict_proba', 'decision_function']:
|
|
check_cross_val_predict_binary(est, X, y, method=method)
|
|
|
|
|
|
class RFWithDecisionFunction(RandomForestClassifier):
|
|
# None of the current multioutput-multiclass estimators have
|
|
# decision function methods. Create a mock decision function
|
|
# to test the cross_val_predict function's handling of this case.
|
|
def decision_function(self, X):
|
|
probs = self.predict_proba(X)
|
|
msg = "This helper should only be used on multioutput-multiclass tasks"
|
|
assert isinstance(probs, list), msg
|
|
probs = [p[:, -1] if p.shape[1] == 2 else p for p in probs]
|
|
return probs
|
|
|
|
|
|
def test_cross_val_predict_with_method_multilabel_rf():
|
|
# The RandomForest allows multiple classes in each label.
|
|
# Output of predict_proba is a list of outputs of predict_proba
|
|
# for each individual label.
|
|
n_classes = 4
|
|
X, y = make_multilabel_classification(n_samples=100, n_labels=3,
|
|
n_classes=n_classes, n_features=5,
|
|
random_state=42)
|
|
y[:, 0] += y[:, 1] # Put three classes in the first column
|
|
for method in ['predict_proba', 'predict_log_proba', 'decision_function']:
|
|
est = RFWithDecisionFunction(n_estimators=5, random_state=0)
|
|
with warnings.catch_warnings():
|
|
# Suppress "RuntimeWarning: divide by zero encountered in log"
|
|
warnings.simplefilter('ignore')
|
|
check_cross_val_predict_multilabel(est, X, y, method=method)
|
|
|
|
|
|
def test_cross_val_predict_with_method_rare_class():
|
|
# Test a multiclass problem where one class will be missing from
|
|
# one of the CV training sets.
|
|
rng = np.random.RandomState(0)
|
|
X = rng.normal(0, 1, size=(14, 10))
|
|
y = np.array([0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 3])
|
|
est = LogisticRegression(solver="liblinear")
|
|
for method in ['predict_proba', 'predict_log_proba', 'decision_function']:
|
|
with warnings.catch_warnings():
|
|
# Suppress warning about too few examples of a class
|
|
warnings.simplefilter('ignore')
|
|
check_cross_val_predict_multiclass(est, X, y, method)
|
|
|
|
|
|
def test_cross_val_predict_with_method_multilabel_rf_rare_class():
|
|
# The RandomForest allows anything for the contents of the labels.
|
|
# Output of predict_proba is a list of outputs of predict_proba
|
|
# for each individual label.
|
|
# In this test, the first label has a class with a single example.
|
|
# We'll have one CV fold where the training data don't include it.
|
|
rng = np.random.RandomState(0)
|
|
X = rng.normal(0, 1, size=(5, 10))
|
|
y = np.array([[0, 0], [1, 1], [2, 1], [0, 1], [1, 0]])
|
|
for method in ['predict_proba', 'predict_log_proba']:
|
|
est = RFWithDecisionFunction(n_estimators=5, random_state=0)
|
|
with warnings.catch_warnings():
|
|
# Suppress "RuntimeWarning: divide by zero encountered in log"
|
|
warnings.simplefilter('ignore')
|
|
check_cross_val_predict_multilabel(est, X, y, method=method)
|
|
|
|
|
|
def get_expected_predictions(X, y, cv, classes, est, method):
|
|
|
|
expected_predictions = np.zeros([len(y), classes])
|
|
func = getattr(est, method)
|
|
|
|
for train, test in cv.split(X, y):
|
|
est.fit(X[train], y[train])
|
|
expected_predictions_ = func(X[test])
|
|
# To avoid 2 dimensional indexing
|
|
if method == 'predict_proba':
|
|
exp_pred_test = np.zeros((len(test), classes))
|
|
else:
|
|
exp_pred_test = np.full((len(test), classes),
|
|
np.finfo(expected_predictions.dtype).min)
|
|
exp_pred_test[:, est.classes_] = expected_predictions_
|
|
expected_predictions[test] = exp_pred_test
|
|
|
|
return expected_predictions
|
|
|
|
|
|
def test_cross_val_predict_class_subset():
|
|
|
|
X = np.arange(200).reshape(100, 2)
|
|
y = np.array([x // 10 for x in range(100)])
|
|
classes = 10
|
|
|
|
kfold3 = KFold(n_splits=3)
|
|
kfold4 = KFold(n_splits=4)
|
|
|
|
le = LabelEncoder()
|
|
|
|
methods = ['decision_function', 'predict_proba', 'predict_log_proba']
|
|
for method in methods:
|
|
est = LogisticRegression(solver="liblinear")
|
|
|
|
# Test with n_splits=3
|
|
predictions = cross_val_predict(est, X, y, method=method,
|
|
cv=kfold3)
|
|
|
|
# Runs a naive loop (should be same as cross_val_predict):
|
|
expected_predictions = get_expected_predictions(X, y, kfold3, classes,
|
|
est, method)
|
|
assert_array_almost_equal(expected_predictions, predictions)
|
|
|
|
# Test with n_splits=4
|
|
predictions = cross_val_predict(est, X, y, method=method,
|
|
cv=kfold4)
|
|
expected_predictions = get_expected_predictions(X, y, kfold4, classes,
|
|
est, method)
|
|
assert_array_almost_equal(expected_predictions, predictions)
|
|
|
|
# Testing unordered labels
|
|
y = shuffle(np.repeat(range(10), 10), random_state=0)
|
|
predictions = cross_val_predict(est, X, y, method=method,
|
|
cv=kfold3)
|
|
y = le.fit_transform(y)
|
|
expected_predictions = get_expected_predictions(X, y, kfold3, classes,
|
|
est, method)
|
|
assert_array_almost_equal(expected_predictions, predictions)
|
|
|
|
|
|
def test_score_memmap():
|
|
# Ensure a scalar score of memmap type is accepted
|
|
iris = load_iris()
|
|
X, y = iris.data, iris.target
|
|
clf = MockClassifier()
|
|
tf = tempfile.NamedTemporaryFile(mode='wb', delete=False)
|
|
tf.write(b'Hello world!!!!!')
|
|
tf.close()
|
|
scores = np.memmap(tf.name, dtype=np.float64)
|
|
score = np.memmap(tf.name, shape=(), mode='r', dtype=np.float64)
|
|
try:
|
|
cross_val_score(clf, X, y, scoring=lambda est, X, y: score)
|
|
# non-scalar should still fail
|
|
assert_raises(ValueError, cross_val_score, clf, X, y,
|
|
scoring=lambda est, X, y: scores)
|
|
finally:
|
|
# Best effort to release the mmap file handles before deleting the
|
|
# backing file under Windows
|
|
scores, score = None, None
|
|
for _ in range(3):
|
|
try:
|
|
os.unlink(tf.name)
|
|
break
|
|
except WindowsError:
|
|
sleep(1.)
|
|
|
|
|
|
@pytest.mark.filterwarnings('ignore: Using or importing the ABCs from')
|
|
def test_permutation_test_score_pandas():
|
|
# check permutation_test_score doesn't destroy pandas dataframe
|
|
types = [(MockDataFrame, MockDataFrame)]
|
|
try:
|
|
from pandas import Series, DataFrame
|
|
types.append((Series, DataFrame))
|
|
except ImportError:
|
|
pass
|
|
for TargetType, InputFeatureType in types:
|
|
# X dataframe, y series
|
|
iris = load_iris()
|
|
X, y = iris.data, iris.target
|
|
X_df, y_ser = InputFeatureType(X), TargetType(y)
|
|
check_df = lambda x: isinstance(x, InputFeatureType)
|
|
check_series = lambda x: isinstance(x, TargetType)
|
|
clf = CheckingClassifier(check_X=check_df, check_y=check_series)
|
|
permutation_test_score(clf, X_df, y_ser)
|
|
|
|
|
|
def test_fit_and_score_failing():
|
|
# Create a failing classifier to deliberately fail
|
|
failing_clf = FailingClassifier(FailingClassifier.FAILING_PARAMETER)
|
|
# dummy X data
|
|
X = np.arange(1, 10)
|
|
y = np.ones(9)
|
|
fit_and_score_args = [failing_clf, X, None, dict(), None, None, 0,
|
|
None, None]
|
|
# passing error score to trigger the warning message
|
|
fit_and_score_kwargs = {'error_score': 0}
|
|
# check if the warning message type is as expected
|
|
assert_warns(FitFailedWarning, _fit_and_score, *fit_and_score_args,
|
|
**fit_and_score_kwargs)
|
|
# since we're using FailingClassfier, our error will be the following
|
|
error_message = "ValueError: Failing classifier failed as required"
|
|
# the warning message we're expecting to see
|
|
warning_message = ("Estimator fit failed. The score on this train-test "
|
|
"partition for these parameters will be set to %f. "
|
|
"Details: \n%s" % (fit_and_score_kwargs['error_score'],
|
|
error_message))
|
|
|
|
def test_warn_trace(msg):
|
|
assert 'Traceback (most recent call last):\n' in msg
|
|
split = msg.splitlines() # note: handles more than '\n'
|
|
mtb = split[0] + '\n' + split[-1]
|
|
return warning_message in mtb
|
|
# check traceback is included
|
|
assert_warns_message(FitFailedWarning, test_warn_trace, _fit_and_score,
|
|
*fit_and_score_args, **fit_and_score_kwargs)
|
|
|
|
fit_and_score_kwargs = {'error_score': 'raise'}
|
|
# check if exception was raised, with default error_score='raise'
|
|
assert_raise_message(ValueError, "Failing classifier failed as required",
|
|
_fit_and_score, *fit_and_score_args,
|
|
**fit_and_score_kwargs)
|
|
|
|
# check that functions upstream pass error_score param to _fit_and_score
|
|
error_message = ("error_score must be the string 'raise' or a"
|
|
" numeric value. (Hint: if using 'raise', please"
|
|
" make sure that it has been spelled correctly.)")
|
|
|
|
assert_raise_message(ValueError, error_message, cross_validate,
|
|
failing_clf, X, cv=3, error_score='unvalid-string')
|
|
|
|
assert_raise_message(ValueError, error_message, cross_val_score,
|
|
failing_clf, X, cv=3, error_score='unvalid-string')
|
|
|
|
assert_raise_message(ValueError, error_message, learning_curve,
|
|
failing_clf, X, y, cv=3, error_score='unvalid-string')
|
|
|
|
assert_raise_message(ValueError, error_message, validation_curve,
|
|
failing_clf, X, y, param_name='parameter',
|
|
param_range=[FailingClassifier.FAILING_PARAMETER],
|
|
cv=3, error_score='unvalid-string')
|
|
|
|
assert failing_clf.score() == 0. # FailingClassifier coverage
|
|
|
|
|
|
def test_fit_and_score_working():
|
|
X, y = make_classification(n_samples=30, random_state=0)
|
|
clf = SVC(kernel="linear", random_state=0)
|
|
train, test = next(ShuffleSplit().split(X))
|
|
# Test return_parameters option
|
|
fit_and_score_args = [clf, X, y, dict(), train, test, 0]
|
|
fit_and_score_kwargs = {'parameters': {'max_iter': 100, 'tol': 0.1},
|
|
'fit_params': None,
|
|
'return_parameters': True}
|
|
result = _fit_and_score(*fit_and_score_args,
|
|
**fit_and_score_kwargs)
|
|
assert result[-1] == fit_and_score_kwargs['parameters']
|
|
|
|
|
|
def three_params_scorer(i, j, k):
|
|
return 3.4213
|
|
|
|
|
|
@pytest.mark.parametrize("return_train_score, scorer, expected", [
|
|
(False, three_params_scorer,
|
|
"[CV] .................................... , score=3.421, total= 0.0s"),
|
|
(True, three_params_scorer,
|
|
"[CV] ................ , score=(train=3.421, test=3.421), total= 0.0s"),
|
|
(True, {'sc1': three_params_scorer, 'sc2': three_params_scorer},
|
|
"[CV] , sc1=(train=3.421, test=3.421)"
|
|
", sc2=(train=3.421, test=3.421), total= 0.0s")
|
|
])
|
|
def test_fit_and_score_verbosity(capsys, return_train_score, scorer, expected):
|
|
X, y = make_classification(n_samples=30, random_state=0)
|
|
clf = SVC(kernel="linear", random_state=0)
|
|
train, test = next(ShuffleSplit().split(X))
|
|
|
|
# test print without train score
|
|
fit_and_score_args = [clf, X, y, scorer, train, test, 10, None, None]
|
|
fit_and_score_kwargs = {'return_train_score': return_train_score}
|
|
_fit_and_score(*fit_and_score_args, **fit_and_score_kwargs)
|
|
out, _ = capsys.readouterr()
|
|
assert out.split('\n')[1] == expected
|
|
|
|
|
|
def test_score():
|
|
error_message = "scoring must return a number, got None"
|
|
|
|
def two_params_scorer(estimator, X_test):
|
|
return None
|
|
fit_and_score_args = [None, None, None, two_params_scorer]
|
|
assert_raise_message(ValueError, error_message,
|
|
_score, *fit_and_score_args)
|