250 lines
9.6 KiB
Python
250 lines
9.6 KiB
Python
import numpy as np
|
|
|
|
import pytest
|
|
|
|
from sklearn.utils._testing import assert_allclose, assert_raises
|
|
from sklearn.neighbors import KernelDensity, KDTree, NearestNeighbors
|
|
from sklearn.neighbors._ball_tree import kernel_norm
|
|
from sklearn.pipeline import make_pipeline
|
|
from sklearn.datasets import make_blobs
|
|
from sklearn.model_selection import GridSearchCV
|
|
from sklearn.preprocessing import StandardScaler
|
|
from sklearn.exceptions import NotFittedError
|
|
import joblib
|
|
|
|
|
|
# XXX Duplicated in test_neighbors_tree, test_kde
|
|
def compute_kernel_slow(Y, X, kernel, h):
|
|
d = np.sqrt(((Y[:, None, :] - X) ** 2).sum(-1))
|
|
norm = kernel_norm(h, X.shape[1], kernel) / X.shape[0]
|
|
|
|
if kernel == 'gaussian':
|
|
return norm * np.exp(-0.5 * (d * d) / (h * h)).sum(-1)
|
|
elif kernel == 'tophat':
|
|
return norm * (d < h).sum(-1)
|
|
elif kernel == 'epanechnikov':
|
|
return norm * ((1.0 - (d * d) / (h * h)) * (d < h)).sum(-1)
|
|
elif kernel == 'exponential':
|
|
return norm * (np.exp(-d / h)).sum(-1)
|
|
elif kernel == 'linear':
|
|
return norm * ((1 - d / h) * (d < h)).sum(-1)
|
|
elif kernel == 'cosine':
|
|
return norm * (np.cos(0.5 * np.pi * d / h) * (d < h)).sum(-1)
|
|
else:
|
|
raise ValueError('kernel not recognized')
|
|
|
|
|
|
def check_results(kernel, bandwidth, atol, rtol, X, Y, dens_true):
|
|
kde = KernelDensity(kernel=kernel, bandwidth=bandwidth,
|
|
atol=atol, rtol=rtol)
|
|
log_dens = kde.fit(X).score_samples(Y)
|
|
assert_allclose(np.exp(log_dens), dens_true,
|
|
atol=atol, rtol=max(1E-7, rtol))
|
|
assert_allclose(np.exp(kde.score(Y)),
|
|
np.prod(dens_true),
|
|
atol=atol, rtol=max(1E-7, rtol))
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
'kernel',
|
|
['gaussian', 'tophat', 'epanechnikov',
|
|
'exponential', 'linear', 'cosine'])
|
|
@pytest.mark.parametrize('bandwidth', [0.01, 0.1, 1])
|
|
def test_kernel_density(kernel, bandwidth):
|
|
n_samples, n_features = (100, 3)
|
|
|
|
rng = np.random.RandomState(0)
|
|
X = rng.randn(n_samples, n_features)
|
|
Y = rng.randn(n_samples, n_features)
|
|
|
|
dens_true = compute_kernel_slow(Y, X, kernel, bandwidth)
|
|
|
|
for rtol in [0, 1E-5]:
|
|
for atol in [1E-6, 1E-2]:
|
|
for breadth_first in (True, False):
|
|
check_results(kernel, bandwidth, atol, rtol,
|
|
X, Y, dens_true)
|
|
|
|
|
|
def test_kernel_density_sampling(n_samples=100, n_features=3):
|
|
rng = np.random.RandomState(0)
|
|
X = rng.randn(n_samples, n_features)
|
|
|
|
bandwidth = 0.2
|
|
|
|
for kernel in ['gaussian', 'tophat']:
|
|
# draw a tophat sample
|
|
kde = KernelDensity(bandwidth=bandwidth, kernel=kernel).fit(X)
|
|
samp = kde.sample(100)
|
|
assert X.shape == samp.shape
|
|
|
|
# check that samples are in the right range
|
|
nbrs = NearestNeighbors(n_neighbors=1).fit(X)
|
|
dist, ind = nbrs.kneighbors(X, return_distance=True)
|
|
|
|
if kernel == 'tophat':
|
|
assert np.all(dist < bandwidth)
|
|
elif kernel == 'gaussian':
|
|
# 5 standard deviations is safe for 100 samples, but there's a
|
|
# very small chance this test could fail.
|
|
assert np.all(dist < 5 * bandwidth)
|
|
|
|
# check unsupported kernels
|
|
for kernel in ['epanechnikov', 'exponential', 'linear', 'cosine']:
|
|
kde = KernelDensity(bandwidth=bandwidth, kernel=kernel).fit(X)
|
|
assert_raises(NotImplementedError, kde.sample, 100)
|
|
|
|
# non-regression test: used to return a scalar
|
|
X = rng.randn(4, 1)
|
|
kde = KernelDensity(kernel="gaussian").fit(X)
|
|
assert kde.sample().shape == (1, 1)
|
|
|
|
|
|
@pytest.mark.parametrize('algorithm', ['auto', 'ball_tree', 'kd_tree'])
|
|
@pytest.mark.parametrize('metric',
|
|
['euclidean', 'minkowski', 'manhattan',
|
|
'chebyshev', 'haversine'])
|
|
def test_kde_algorithm_metric_choice(algorithm, metric):
|
|
# Smoke test for various metrics and algorithms
|
|
rng = np.random.RandomState(0)
|
|
X = rng.randn(10, 2) # 2 features required for haversine dist.
|
|
Y = rng.randn(10, 2)
|
|
|
|
if algorithm == 'kd_tree' and metric not in KDTree.valid_metrics:
|
|
assert_raises(ValueError, KernelDensity,
|
|
algorithm=algorithm, metric=metric)
|
|
else:
|
|
kde = KernelDensity(algorithm=algorithm, metric=metric)
|
|
kde.fit(X)
|
|
y_dens = kde.score_samples(Y)
|
|
assert y_dens.shape == Y.shape[:1]
|
|
|
|
|
|
def test_kde_score(n_samples=100, n_features=3):
|
|
pass
|
|
# FIXME
|
|
# rng = np.random.RandomState(0)
|
|
# X = rng.random_sample((n_samples, n_features))
|
|
# Y = rng.random_sample((n_samples, n_features))
|
|
|
|
|
|
def test_kde_badargs():
|
|
assert_raises(ValueError, KernelDensity,
|
|
algorithm='blah')
|
|
assert_raises(ValueError, KernelDensity,
|
|
bandwidth=0)
|
|
assert_raises(ValueError, KernelDensity,
|
|
kernel='blah')
|
|
assert_raises(ValueError, KernelDensity,
|
|
metric='blah')
|
|
assert_raises(ValueError, KernelDensity,
|
|
algorithm='kd_tree', metric='blah')
|
|
kde = KernelDensity()
|
|
assert_raises(ValueError, kde.fit, np.random.random((200, 10)),
|
|
sample_weight=np.random.random((200, 10)))
|
|
assert_raises(ValueError, kde.fit, np.random.random((200, 10)),
|
|
sample_weight=-np.random.random(200))
|
|
|
|
|
|
def test_kde_pipeline_gridsearch():
|
|
# test that kde plays nice in pipelines and grid-searches
|
|
X, _ = make_blobs(cluster_std=.1, random_state=1,
|
|
centers=[[0, 1], [1, 0], [0, 0]])
|
|
pipe1 = make_pipeline(StandardScaler(with_mean=False, with_std=False),
|
|
KernelDensity(kernel="gaussian"))
|
|
params = dict(kerneldensity__bandwidth=[0.001, 0.01, 0.1, 1, 10])
|
|
search = GridSearchCV(pipe1, param_grid=params)
|
|
search.fit(X)
|
|
assert search.best_params_['kerneldensity__bandwidth'] == .1
|
|
|
|
|
|
def test_kde_sample_weights():
|
|
n_samples = 400
|
|
size_test = 20
|
|
weights_neutral = np.full(n_samples, 3.)
|
|
for d in [1, 2, 10]:
|
|
rng = np.random.RandomState(0)
|
|
X = rng.rand(n_samples, d)
|
|
weights = 1 + (10 * X.sum(axis=1)).astype(np.int8)
|
|
X_repetitions = np.repeat(X, weights, axis=0)
|
|
n_samples_test = size_test // d
|
|
test_points = rng.rand(n_samples_test, d)
|
|
for algorithm in ['auto', 'ball_tree', 'kd_tree']:
|
|
for metric in ['euclidean', 'minkowski', 'manhattan',
|
|
'chebyshev']:
|
|
if algorithm != 'kd_tree' or metric in KDTree.valid_metrics:
|
|
kde = KernelDensity(algorithm=algorithm, metric=metric)
|
|
|
|
# Test that adding a constant sample weight has no effect
|
|
kde.fit(X, sample_weight=weights_neutral)
|
|
scores_const_weight = kde.score_samples(test_points)
|
|
sample_const_weight = kde.sample(random_state=1234)
|
|
kde.fit(X)
|
|
scores_no_weight = kde.score_samples(test_points)
|
|
sample_no_weight = kde.sample(random_state=1234)
|
|
assert_allclose(scores_const_weight, scores_no_weight)
|
|
assert_allclose(sample_const_weight, sample_no_weight)
|
|
|
|
# Test equivalence between sampling and (integer) weights
|
|
kde.fit(X, sample_weight=weights)
|
|
scores_weight = kde.score_samples(test_points)
|
|
sample_weight = kde.sample(random_state=1234)
|
|
kde.fit(X_repetitions)
|
|
scores_ref_sampling = kde.score_samples(test_points)
|
|
sample_ref_sampling = kde.sample(random_state=1234)
|
|
assert_allclose(scores_weight, scores_ref_sampling)
|
|
assert_allclose(sample_weight, sample_ref_sampling)
|
|
|
|
# Test that sample weights has a non-trivial effect
|
|
diff = np.max(np.abs(scores_no_weight - scores_weight))
|
|
assert diff > 0.001
|
|
|
|
# Test invariance with respect to arbitrary scaling
|
|
scale_factor = rng.rand()
|
|
kde.fit(X, sample_weight=(scale_factor * weights))
|
|
scores_scaled_weight = kde.score_samples(test_points)
|
|
assert_allclose(scores_scaled_weight, scores_weight)
|
|
|
|
|
|
def test_sample_weight_invalid():
|
|
# Check sample weighting raises errors.
|
|
kde = KernelDensity()
|
|
data = np.reshape([1., 2., 3.], (-1, 1))
|
|
|
|
sample_weight = [0.1, -0.2, 0.3]
|
|
expected_err = "sample_weight must have positive values"
|
|
with pytest.raises(ValueError, match=expected_err):
|
|
kde.fit(data, sample_weight=sample_weight)
|
|
|
|
|
|
@pytest.mark.parametrize('sample_weight', [None, [0.1, 0.2, 0.3]])
|
|
def test_pickling(tmpdir, sample_weight):
|
|
# Make sure that predictions are the same before and after pickling. Used
|
|
# to be a bug because sample_weights wasn't pickled and the resulting tree
|
|
# would miss some info.
|
|
|
|
kde = KernelDensity()
|
|
data = np.reshape([1., 2., 3.], (-1, 1))
|
|
kde.fit(data, sample_weight=sample_weight)
|
|
|
|
X = np.reshape([1.1, 2.1], (-1, 1))
|
|
scores = kde.score_samples(X)
|
|
|
|
file_path = str(tmpdir.join('dump.pkl'))
|
|
joblib.dump(kde, file_path)
|
|
kde = joblib.load(file_path)
|
|
scores_pickled = kde.score_samples(X)
|
|
|
|
assert_allclose(scores, scores_pickled)
|
|
|
|
|
|
@pytest.mark.parametrize('method', ['score_samples', 'sample'])
|
|
def test_check_is_fitted(method):
|
|
# Check that predict raises an exception in an unfitted estimator.
|
|
# Unfitted estimators should raise a NotFittedError.
|
|
rng = np.random.RandomState(0)
|
|
X = rng.randn(10, 2)
|
|
kde = KernelDensity()
|
|
|
|
with pytest.raises(NotFittedError):
|
|
getattr(kde, method)(X)
|