84 lines
2.9 KiB
Python
84 lines
2.9 KiB
Python
import numpy as np
|
|
|
|
import skimage.data
|
|
from skimage.measure import compare_nrmse, compare_psnr, compare_mse
|
|
|
|
from skimage._shared import testing
|
|
from skimage._shared.testing import assert_equal, assert_almost_equal
|
|
from skimage._shared._warnings import expected_warnings
|
|
|
|
|
|
np.random.seed(5)
|
|
cam = skimage.data.camera()
|
|
sigma = 20.0
|
|
cam_noisy = np.clip(cam + sigma * np.random.randn(*cam.shape), 0, 255)
|
|
cam_noisy = cam_noisy.astype(cam.dtype)
|
|
|
|
|
|
def test_PSNR_vs_IPOL():
|
|
# Tests vs. imdiff result from the following IPOL article and code:
|
|
# https://www.ipol.im/pub/art/2011/g_lmii/
|
|
p_IPOL = 22.4497
|
|
with expected_warnings(['DEPRECATED']):
|
|
p = compare_psnr(cam, cam_noisy)
|
|
assert_almost_equal(p, p_IPOL, decimal=4)
|
|
|
|
|
|
def test_PSNR_float():
|
|
with expected_warnings(['DEPRECATED']):
|
|
p_uint8 = compare_psnr(cam, cam_noisy)
|
|
p_float64 = compare_psnr(cam / 255., cam_noisy / 255.,
|
|
data_range=1)
|
|
assert_almost_equal(p_uint8, p_float64, decimal=5)
|
|
|
|
# mixed precision inputs
|
|
with expected_warnings(['DEPRECATED']):
|
|
p_mixed = compare_psnr(cam / 255., np.float32(cam_noisy / 255.),
|
|
data_range=1)
|
|
assert_almost_equal(p_mixed, p_float64, decimal=5)
|
|
|
|
# mismatched dtype results in a warning if data_range is unspecified
|
|
with expected_warnings(['Inputs have mismatched dtype', 'DEPRECATED']):
|
|
p_mixed = compare_psnr(cam / 255., np.float32(cam_noisy / 255.))
|
|
assert_almost_equal(p_mixed, p_float64, decimal=5)
|
|
|
|
|
|
def test_PSNR_errors():
|
|
with expected_warnings(['DEPRECATED']):
|
|
# shape mismatch
|
|
with testing.raises(ValueError):
|
|
compare_psnr(cam, cam[:-1, :])
|
|
|
|
|
|
def test_NRMSE():
|
|
x = np.ones(4)
|
|
y = np.asarray([0., 2., 2., 2.])
|
|
with expected_warnings(['DEPRECATED']):
|
|
assert_equal(compare_nrmse(y, x, 'mean'), 1 / np.mean(y))
|
|
assert_equal(compare_nrmse(y, x, 'Euclidean'), 1 / np.sqrt(3))
|
|
assert_equal(compare_nrmse(y, x, 'min-max'), 1 / (y.max() - y.min()))
|
|
|
|
# mixed precision inputs are allowed
|
|
assert_almost_equal(compare_nrmse(y, np.float32(x), 'min-max'),
|
|
1 / (y.max() - y.min()))
|
|
|
|
|
|
def test_NRMSE_no_int_overflow():
|
|
camf = cam.astype(np.float32)
|
|
cam_noisyf = cam_noisy.astype(np.float32)
|
|
with expected_warnings(['DEPRECATED']):
|
|
assert_almost_equal(compare_mse(cam, cam_noisy),
|
|
compare_mse(camf, cam_noisyf))
|
|
assert_almost_equal(compare_nrmse(cam, cam_noisy),
|
|
compare_nrmse(camf, cam_noisyf))
|
|
|
|
|
|
def test_NRMSE_errors():
|
|
x = np.ones(4)
|
|
with expected_warnings(['DEPRECATED']):
|
|
# shape mismatch
|
|
with testing.raises(ValueError):
|
|
compare_nrmse(x[:-1], x)
|
|
# invalid normalization name
|
|
with testing.raises(ValueError):
|
|
compare_nrmse(x, x, norm_type='foo')
|