132 lines
3 KiB
Python
132 lines
3 KiB
Python
import numpy as np
|
|
from skimage.measure import find_contours
|
|
|
|
from skimage._shared import testing
|
|
from skimage._shared.testing import assert_array_equal
|
|
from pytest import raises
|
|
|
|
|
|
a = np.ones((8, 8), dtype=np.float32)
|
|
a[1:-1, 1] = 0
|
|
a[1, 1:-1] = 0
|
|
|
|
x, y = np.mgrid[-1:1:5j, -1:1:5j]
|
|
r = np.sqrt(x**2 + y**2)
|
|
|
|
|
|
def test_binary():
|
|
ref = [[6. , 1.5],
|
|
[5. , 1.5],
|
|
[4. , 1.5],
|
|
[3. , 1.5],
|
|
[2. , 1.5],
|
|
[1.5, 2. ],
|
|
[1.5, 3. ],
|
|
[1.5, 4. ],
|
|
[1.5, 5. ],
|
|
[1.5, 6. ],
|
|
[1. , 6.5],
|
|
[0.5, 6. ],
|
|
[0.5, 5. ],
|
|
[0.5, 4. ],
|
|
[0.5, 3. ],
|
|
[0.5, 2. ],
|
|
[0.5, 1. ],
|
|
[1. , 0.5],
|
|
[2. , 0.5],
|
|
[3. , 0.5],
|
|
[4. , 0.5],
|
|
[5. , 0.5],
|
|
[6. , 0.5],
|
|
[6.5, 1. ],
|
|
[6. , 1.5]]
|
|
|
|
contours = find_contours(a, 0.5, positive_orientation='high')
|
|
assert len(contours) == 1
|
|
assert_array_equal(contours[0][::-1], ref)
|
|
|
|
|
|
# target contour for mask tests
|
|
mask_contour = [
|
|
[6. , 0.5],
|
|
[5. , 0.5],
|
|
[4. , 0.5],
|
|
[3. , 0.5],
|
|
[2. , 0.5],
|
|
[1. , 0.5],
|
|
[0.5, 1. ],
|
|
[0.5, 2. ],
|
|
[0.5, 3. ],
|
|
[0.5, 4. ],
|
|
[0.5, 5. ],
|
|
[0.5, 6. ],
|
|
[1. , 6.5],
|
|
[1.5, 6. ],
|
|
[1.5, 5. ],
|
|
[1.5, 4. ],
|
|
[1.5, 3. ],
|
|
[1.5, 2. ],
|
|
[2. , 1.5],
|
|
[3. , 1.5],
|
|
[4. , 1.5],
|
|
[5. , 1.5],
|
|
[6. , 1.5],
|
|
]
|
|
|
|
mask = np.ones((8, 8), dtype=bool)
|
|
# Some missing data that should result in a hole in the contour:
|
|
mask[7, 0:3] = False
|
|
|
|
|
|
def test_nodata():
|
|
# Test missing data via NaNs in input array
|
|
b = np.copy(a)
|
|
b[~mask] = np.nan
|
|
contours = find_contours(b, 0.5, positive_orientation='high')
|
|
assert len(contours) == 1
|
|
assert_array_equal(contours[0], mask_contour)
|
|
|
|
|
|
def test_mask():
|
|
# Test missing data via explicit masking
|
|
contours = find_contours(a, 0.5, positive_orientation='high', mask=mask)
|
|
assert len(contours) == 1
|
|
assert_array_equal(contours[0], mask_contour)
|
|
|
|
|
|
def test_mask_shape():
|
|
bad_mask = np.ones((8, 7), dtype=bool)
|
|
with raises(ValueError, match='shape'):
|
|
find_contours(a, 0, mask=bad_mask)
|
|
|
|
|
|
def test_mask_dtype():
|
|
bad_mask = np.ones((8,8), dtype=np.uint8)
|
|
with raises(TypeError, match='binary'):
|
|
find_contours(a, 0, mask=bad_mask)
|
|
|
|
|
|
def test_float():
|
|
contours = find_contours(r, 0.5)
|
|
assert len(contours) == 1
|
|
assert_array_equal(contours[0],
|
|
[[ 2., 3.],
|
|
[ 1., 2.],
|
|
[ 2., 1.],
|
|
[ 3., 2.],
|
|
[ 2., 3.]])
|
|
|
|
|
|
def test_memory_order():
|
|
contours = find_contours(np.ascontiguousarray(r), 0.5)
|
|
assert len(contours) == 1
|
|
|
|
contours = find_contours(np.asfortranarray(r), 0.5)
|
|
assert len(contours) == 1
|
|
|
|
|
|
def test_invalid_input():
|
|
with testing.raises(ValueError):
|
|
find_contours(r, 0.5, 'foo', 'bar')
|
|
with testing.raises(ValueError):
|
|
find_contours(r[..., None], 0.5)
|